• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dúvida Derivada]: Empaquei , regra do quociente (eu acho)

[Dúvida Derivada]: Empaquei , regra do quociente (eu acho)

Mensagempor Moreschi » Sex Set 21, 2012 17:03

olá Pessoal este é meu post de estréia aqui, acompanho o fórum há algum tempo e já retirei informações importantes daqui, mas estava resolvendo uma lista de derivadas e me deparei com esta\frac{d}{ds}=\left(\frac{{s}^{2}-{a}^{2}}{{s}^{2}+{a}^{2}} \right), simplesmente nao consigo resolver aplico a regra do quociente mas não chega a lugar nenhum, realmente apanhei desta. agradeceria uma ajuda
Moreschi
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Set 21, 2012 16:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: formado

Re: [Dúvida Derivada]: Empaquei , regra do quociente (eu ach

Mensagempor young_jedi » Sex Set 21, 2012 18:44

vamos la então Moreschi

a regra do produto diz que

\frac{d}{ds}\left(\frac{f(s)}{g(s)\right)}&=&\frac{f'(s).g(s)-f(s).g'(s)}{g^2(s)}

f(s)&=&s^2-a^2

g(s)&=&s^2+a^2

f'(s)&=&2.s

g'(s)&=&2.s

\frac{d}{ds}\left(\frac{f(s)}{g(s)}\right)&=&\frac{2s.(s^2+a^2)-(s^2-a^2).2.s.}{(s^2+a^2)^2}

\frac{d}{ds}\left(\frac{f(s)}{g(s)}\right)&=&\frac{4.s.a^2}{(s^2+a^2)^2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Dúvida Derivada]: Empaquei , regra do quociente (eu ach

Mensagempor Moreschi » Seg Set 24, 2012 09:03

PeraÊ vc tratou o "a" como uma constante? por isso ficou daquele jeito ?

mas de qualquer forma obrigado :D
Moreschi
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Set 21, 2012 16:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: formado

Re: [Dúvida Derivada]: Empaquei , regra do quociente (eu ach

Mensagempor young_jedi » Seg Set 24, 2012 10:18

extamente a menos que o exercicio tenha falado algo sobre a, temos que ele é uma constante
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: