• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor iceman » Ter Set 18, 2012 19:32

Lim \frac{\sqrt{x}{-3}}{x^2-9x}
x\rightarrow9

Ajuda ? vlw!
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 19:47

Eu tinha feito uma pergunta, mas vou resolver do jeito que está aí:

\frac{\sqrt{x} - 3}{x^2 - 9x}

Repare que podemos manipular o denominador da seguinte forma:

x^2 - 9x = (\sqrt{x} - 3) \cdot (x^{\frac{3}{2}} + 3x)

Aplicando na fração:

\frac{(\sqrt{x}  - 3)}{(\sqrt{x}  -3) \cdot (x^{\frac{3}{2}} + 3x)} \Rightarrow \frac{1}{(x^{\frac{3}{2}} + 3x) }

Substituindo no limite temos:

\lim_{x \rightarrow 9} \frac{1}{(x^{\frac{3}{2}} + 3x) } = \frac{1}{54}

[ ]'s
Renato.
Editado pela última vez por Renato_RJ em Ter Set 18, 2012 19:54, em um total de 3 vezes.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Limites

Mensagempor iceman » Ter Set 18, 2012 19:51

Renato_RJ escreveu:Tira uma dúvida, é \sqrt{x} - 3 ou \sqrt{x-3} e no denominador é realmente x^2 - 9x ???

Grato,
Renato.


É \sqrt{x} - 3
Sim é x^2 - 9x


Valeu.
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 19:54

iceman escreveu:
É \sqrt{x} - 3
Sim é x^2 - 9x


Valeu.


Te respondi acima...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Limites

Mensagempor iceman » Ter Set 18, 2012 20:10

Renato_RJ escreveu:Eu tinha feito uma pergunta, mas vou resolver do jeito que está aí:

\frac{\sqrt{x} - 3}{x^2 - 9x}

Repare que podemos manipular o denominador da seguinte forma:

x^2 - 9x = (\sqrt{x} - 3) \cdot (x^{\frac{3}{2}} + 3x)

Aplicando na fração:

\frac{(\sqrt{x}  - 3)}{(\sqrt{x}  -3) \cdot (x^{\frac{3}{2}} + 3x)} \Rightarrow \frac{1}{(x^{\frac{3}{2}} + 3x) }

Substituindo no limite temos:

\lim_{x \rightarrow 9} \frac{1}{(x^{\frac{3}{2}} + 3x) } = \frac{1}{54}

[ ]'s
Renato.



Renato conferi sua resposta aqui e deu correto, porém, eu não entendi o x^\frac{3}{2} poderia me explicar? obrigadão!
Tem um jeito mais fácil sem ter essa fração ?
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 20:22

iceman escreveu:
Renato conferi sua resposta aqui e deu correto, porém, eu não entendi o x^\frac{3}{2} poderia me explicar? obrigadão!
Tem um jeito mais fácil sem ter essa fração ?


O termo x^{\frac{3}{2}} é para termos um x^4 dentro da raiz e, quando resolvêssemos teríamos x^2.

Pois x^{\frac{3}{2}} = \sqrt{x^3}

Bem, se tem outra forma eu desconheço (seria bem legal se alguém publicasse outra forma de resolver essa questão)...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Limites

Mensagempor iceman » Ter Set 18, 2012 20:33

Renato_RJ escreveu:
iceman escreveu:
Renato conferi sua resposta aqui e deu correto, porém, eu não entendi o x^\frac{3}{2} poderia me explicar? obrigadão!
Tem um jeito mais fácil sem ter essa fração ?


O termo x^{\frac{3}{2}} é para termos um x^4 dentro da raiz e, quando resolvêssemos teríamos x^2.

Pois x^{\frac{3}{2}} = \sqrt{x^3}

Bem, se tem outra forma eu desconheço (seria bem legal se alguém publicasse outra forma de resolver essa questão)...



Achei outra forma mas confesso que não entendi :X

\frac{\sqrt{x}-3*\sqrt{x+3}}{x(x-9)*\sqrt{x+3}}

\frac{\sqrt{x}^2-9}{x(x-9)*\sqrt{x+3}}

\frac{x-9}{x(x-9)*\sqrt{x+3}}

\frac{1}{x(\sqrt{x}+3)}

\frac{1}{9(\sqrt{9}+3)}

\frac{1}{9*6}

\frac{1}{54}
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Renato_RJ » Ter Set 18, 2012 20:53

Essa solução que você achou é bem mais simples que a minha.... Gostei !!!

O que o autor fez foi 1 = \frac{\sqrt{x} + 3}{\sqrt{x} + 3} e não faz diferença multiplicar uma fração por 1, pois não muda nada... Mas essa fração dá para operar com a raiz e obter o x - 9 no numerador e cancelar com o do denominador...

Bem prático....

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?