• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[ LIMITE] Limite com módulo!

[ LIMITE] Limite com módulo!

Mensagempor mih123 » Qua Set 12, 2012 17:26

Olá, estou em dúvida em alguns exercícios de limite com módulo. Tentei fazer este aqui,mas não sei como fazer os dois limites laterais!

\lim_{x\to5/3}\sqrt[2]{\left|x \right|+\left|\left|3x \right| \right|+4}
mih123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Seg Ago 27, 2012 03:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [ LIMITE] Limite com módulo!

Mensagempor LuizAquino » Sex Set 14, 2012 16:32

mih123 escreveu:Olá, estou em dúvida em alguns exercícios de limite com módulo. Tentei fazer este aqui,mas não sei como fazer os dois limites laterais!

\lim_{x\to5/3}\sqrt[2]{\left|x \right|+\left|\left|3x \right| \right|+4}


Note que tanto para x\to \frac{5}{3}^+ quanto para x\to \frac{5}{3}^- temos que x e 3x são números positivos. Sendo assim, em ambos os casos teremos |x| = x e |3x| = 3x (e obviamente ||3x|| = |3x| = 3x).

\lim_{x\to\frac{5}{3}^+} \sqrt{\left|x \right|+\left|\left|3x \right| \right|+4} = \lim_{x\to\frac{5}{3}^+} \sqrt{x + 3x + 4} = \sqrt{\frac{5}{3} + 3\cdot\frac{5}{3} + 4} = \frac{4\sqrt{6}}{3}

\lim_{x\to\frac{5}{3}^-} \sqrt{\left|x \right|+\left|\left|3x \right| \right|+4} = \lim_{x\to\frac{5}{3}^-} \sqrt{x + 3x + 4} = \sqrt{\frac{5}{3} + 3\cdot\frac{5}{3} + 4} = \frac{4\sqrt{6}}{3}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [ LIMITE] Limite com módulo!

Mensagempor mih123 » Sex Set 14, 2012 20:07

Eu ainda tenho uma dúvida,quando será -\left|x \right|?? Pensei que nos limites laterais,um seria positivo e o outro negativo.Faço muita confusão com isso.
mih123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Seg Ago 27, 2012 03:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [ LIMITE] Limite com módulo!

Mensagempor LuizAquino » Dom Set 16, 2012 11:11

mih123 escreveu:Eu ainda tenho uma dúvida,quando será -\left|x \right|?? Pensei que nos limites laterais,um seria positivo e o outro negativo.Faço muita confusão com isso.


O que você precisa entender a definição de módulo. Nós definimos que o módulo de um número real a (sendo que este módulo é representado por |a|), é tal que:

|a| = \begin{cases}a,\,\textrm{ se }a \geq 0 \\ -a,\,\textrm{ se } a < 0\end{cases}

Note que se a é um número negativo, então |a| = -a. Por exemplo, temos que |-2| = -(-2) = 2.

É isso que você precisa analisar no limite que tem módulo: o que está dentro do módulo é um número positivo ou negativo?

Vejamos um exemplo. Considere o limite abaixo:

\lim_{x\to 2} \dfrac{|3x - 6|}{x - 2}

Note que quando x se aproxima de 2 pela direita, ou seja x\to 2^+ , o número 3x - 6 é positivo. Faça um teste: escolha x = 2,1 e calcule 3x - 6. Dessa forma, como o número 3x - 6 é positivo, temos que |3x - 6| = 3x - 6 e ficamos com:

\lim_{x\to 2^+} \dfrac{3x - 6}{x - 2} = \lim_{x\to 2^+} \dfrac{3(x - 2)}{x - 2} = \lim_{x\to 2^+} 3 = 3

Por outro lado, note que quando x se aproxima de 2 pela esquerda, ou seja x\to 2^- , o número 3x - 6 é negativo. Faça um teste: escolha x = 1,9 e calcule 3x - 6. Dessa forma, como o número 3x - 6 é negativo, temos que |3x - 6| = -(3x - 6) e ficamos com:

\lim_{x\to 2^-} \dfrac{-(3x - 6)}{x - 2} = \lim_{x\to 2^-} \dfrac{-3(x - 2)}{x - 2} = \lim_{x\to 2^-} -3 = -3

Vamos agora considerar um outro exemplo. Seja o limite abaixo:

\lim_{x\to 5} \dfrac{|2x - 8|}{x - 4}

Nesse caso, note que quando x se aproxima de 5 tanto pela direita quanto pela esquerda, temos que o número 2x - 8 é positivo (e portanto |2x - 8| = 2x - 8 em ambos os limites laterais). Desse modo, temos que:

\lim_{x\to 5^+} \dfrac{2x - 8}{x - 4} = \dfrac{2\cdot 5 - 8}{5 - 4}  = 2

\lim_{x\to 5^-} \dfrac{2x - 8}{x - 4} = \dfrac{2\cdot 5 - 8}{5 - 4}  = 2

Agora tente você mesmo. Analise o limite abaixo:

\lim_{x\to 1} \dfrac{|2x - 4|}{x - 2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59