• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvidas e curiosidade com os limites fundamentais

Dúvidas e curiosidade com os limites fundamentais

Mensagempor Luthius » Seg Ago 03, 2009 11:29

Dado o seguinte limite fundamental de Euler.
\lim_{x\rightarrow\infty}(1+\frac{1}{x})^x=e

Podendo a mesma ser substituida por:
\lim_{x\rightarrow\infty}(1+x)^\frac{1}{x}=e

Chegamos na seguinte simplificação/substituição:

\lim_{x\rightarrow\infty}\sqrt[x]{(1+x)}=e

Usando uma das leis do limite:
\lim_{x\rightarrow a}\sqrt[n]{x}=\sqrt[n]{a}

Pela simplificação teriamos como resultado :
\lim_{x\rightarrow \infty}\sqrt[n]{\infty}=e?

Abraços a todos, e agradecimentos pelo tempo disponível.
Luthius
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 30, 2009 09:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Dúvidas e curiosidade com os limites fundamentais

Mensagempor Felipe Schucman » Seg Ago 03, 2009 13:58

Luthius escreveu:
Usando uma das leis do limite:
\lim_{x\rightarrow a}\sqrt[n]{x}=\sqrt[n]{a}

Pela simplificação teriamos como resultado :
\lim_{x\rightarrow \infty}\sqrt[n]{\infty}=e?

Abraços a todos, e agradecimentos pelo tempo disponível.


Bom Dia,

Não sei se concordo com essas duas partes, você poderia explicar melhor?

Um Abraço!
Felipe Schucman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Ter Jul 28, 2009 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia e Direito
Andamento: cursando

Re: Dúvidas e curiosidade com os limites fundamentais

Mensagempor Luthius » Seg Ago 03, 2009 15:31

Usando uma das leis do limite diz que :
\lim_{x\rightarrow a}\sqrt[n]{x}=\sqrt[n]{a}

O que eu fiz foi somente uma simplificação do limite fundamental e aplicar o mesmo com a lei do limite citado acima, entretanto o resultado gera dúvida conforme abaixo:
\lim_{x\rightarrow \infty}\sqrt[n]{\infty}=e?

Ou seja, porque isto acontece?
E isso não me parece ser uma verdade e sim uma indeterminação.

Abraços a todos, e agradecimentos pelo tempo disponível.
Luthius
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 30, 2009 09:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Dúvidas e curiosidade com os limites fundamentais

Mensagempor Felipe Schucman » Seg Ago 03, 2009 15:50

Luthius escreveu:Usando uma das leis do limite diz que :
\lim_{x\rightarrow a}\sqrt[n]{x}=\sqrt[n]{a}

O que eu fiz foi somente uma simplificação do limite fundamental e aplicar o mesmo com a lei do limite citado acima, entretanto o resultado gera dúvida conforme abaixo:
\lim_{x\rightarrow \infty}\sqrt[n]{\infty}=e?

Ou seja, porque isto acontece?
E isso não me parece ser uma verdade e sim uma indeterminação.

Abraços a todos, e agradecimentos pelo tempo disponível.


Me desculpe Lutius se eu estiver errado,
porém você foi impreciso nas anotações, quando um incognita tende a um certo numero, não quer dizer que ela é esse certo numero, algo que tende a zero não é zero, muitas vezes é algo tão proximos que simplificamos no resultado final para melhor compreensão....
Outra coisa continuo não entendendo como ocorre tal simplificação, o "n" surgiu da onde?
No caso do limite fundamental, o numero se aproxima de "e" porque \lim_{x\rightarrow\infty}\sqrt[x]{(1+x)}=e o valor começa a convergir para certo ponto, pois o valor exponencial "cresce mais rapido", fica potencialmente maior conforme o valor aumenta...no caso se você for jogando com um calculadora valores iguais nos dois x e ir cada vez aumentando você verá que o valor começa a chegar a um certo numero (tem que ser um boa calculadora pois os valores tem que ser altos!).

Não sei se eu soube me explicar direito, mas foi tentando ajudar!

Um Abraço!
Felipe Schucman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Ter Jul 28, 2009 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia e Direito
Andamento: cursando

Re: Dúvidas e curiosidade com os limites fundamentais

Mensagempor Luthius » Ter Ago 04, 2009 08:44

Realmente eu me enganei, principalmento no valor que x se aproxima no limite fundamental, pois o correto é zero (0) ao invés de infinito.
E na lei do limite de raiz, o 'n' é fixo, diferente deste que o valor assumido é o de 'x'.
Obrigado pela luz, estava muito enganado.
Luthius
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 30, 2009 09:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 86 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D