• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite - usando apenas limites notáveis

Limite - usando apenas limites notáveis

Mensagempor emsbp » Seg Jul 23, 2012 16:45

Boa tarde.
É pedido para calcular \lim_{x\rightarrow1}\frac{1-{x}^{2}}{sen(\pi x)}.
Já tentei e chego sempre a uma indeterminação. Sei que o resultado é \frac{2}{\pi}. Confirmei pelo Wolfram, mas resolvem utilizando regra de l´hopital e interessa-me usar apenas limites notáveis com ou sem substituição.
Tentei utilizar o limite notável \lim_{x\rightarrow0}\frac{sen x}{x}=1,mas não estou a conseguir chegar ao resultado.
Peço ajuda. Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Limite - usando apenas limites notáveis

Mensagempor LuizAquino » Seg Jul 23, 2012 17:31

emsbp escreveu:Boa tarde.
É pedido para calcular \lim_{x\rightarrow1}\frac{1-{x}^{2}}{sen(\pi x)}.
Já tentei e chego sempre a uma indeterminação. Sei que o resultado é \frac{2}{\pi}. Confirmei pelo Wolfram, mas resolvem utilizando regra de l´hopital e interessa-me usar apenas limites notáveis com ou sem substituição.
Tentei utilizar o limite notável \lim_{x\rightarrow0}\frac{sen x}{x}=1,mas não estou a conseguir chegar ao resultado.
Peço ajuda. Obrigado!


Note que:

\lim_{x\to 1}\frac{1- x^2}{\textrm{sen}\, \pi x} = \lim_{x\to 1}\frac{(1 - x)(1 + x)}{\textrm{sen}\, \pi x}

Fazendo a substituição u = 1 - x, temos que:

= \lim_{u\to 0}\frac{u(2 - u)}{\textrm{sen}\,\left(\pi - \pi u\right)}

= \lim_{u\to 0}\frac{u(2 - u)}{\textrm{sen}\,\pi\cos\pi u - \textrm{sen}\,\pi u\cos \pi}

= \lim_{u\to 0}\frac{u(2 - u)}{\textrm{sen}\,\pi u }

Agora tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite - usando apenas limites notáveis

Mensagempor emsbp » Ter Jul 24, 2012 16:50

Ok. Muito obrigado. Já percebi.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)