• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raizes de equação de grau>=3

Raizes de equação de grau>=3

Mensagempor citadp » Qua Jun 20, 2012 09:32

Tenho também uma dúvida acerca de raízes.
Tenho uma função x^6+3x^5 = -1

Pedem-me, mostre que a equação tem uma raiz em ]-1, 0 [

Ora, o que eu costumo fazer é derivar, o que me dá 6x^5+ 15x^4

Como não consigo calcular assim os zeros, simplifiquei : x^3(x^2 + 15x) = 0 o que me dá um zero em x=-15, o que supostamente me ensinaram foi que se a derivada não tiver zeros existe apenas um zero na função.

Assim a derivada tem zeros.

Alguém me pode ajudar a resolver isto ?
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Re: Raizes de equação de grau>=3

Mensagempor Russman » Qua Jun 20, 2012 10:47

citadp escreveu:Tenho uma função equação x^6+3x^5 = -1

Pedem-me, mostre que a equação tem uma raiz em ]-1, 0 [


Veja que para existir tal raíz a função f(x) = x^{6}+3x^{5} +1 deve mudar de sinal entre (-\infty,-1) e (0,+\infty)

Então, para isto, basta selecionar um valor de x_{1} \in (-\infty,-1) e outro de x_{2} \in (0,+\infty) e mostrar que f(x_{1}) <0 e f(x_{2})>0.

Para x_{1} eu escolho, por exemplo x_{1} = -2. Assim,

f(-2) = (-2)^{6} + 3.(-2)^{5} + 1 = -31 <0.

Para x_{2} eu escolho, por exemplo x_{2} = 1. Assim,


f(1/2) = (1)^{6} + 3.(1)^{5} + 1 = 5 >0.

Logo, concluímos que existe uma raíz no intervalo (-1, 0).
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Raizes de equação de grau>=3

Mensagempor citadp » Qua Jun 20, 2012 10:54

Então não é necessário fazer a derivada da função neste caso ?

E quando nos pedem para mostrar que a função tem no máximo duas raízes ou exactamente duas raízes reais?
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Re: Raizes de equação de grau>=3

Mensagempor Russman » Sex Jul 06, 2012 15:49

citadp escreveu:Então não é necessário fazer a derivada da função neste caso ?


Não! Se a função é contínua então na troca de sinais ela precisa necessariamente passar pelo zero.
citadp escreveu:E quando nos pedem para mostrar que a função tem no máximo duas raízes ou exactamente duas raízes reais?


Depende da função que você estudará!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 26 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}