por citadp » Qua Jun 20, 2012 09:32
Tenho também uma dúvida acerca de raízes.
Tenho uma função x^6+3x^5 = -1
Pedem-me, mostre que a equação tem uma raiz em ]-1, 0 [
Ora, o que eu costumo fazer é derivar, o que me dá 6x^5+ 15x^4
Como não consigo calcular assim os zeros, simplifiquei : x^3(x^2 + 15x) = 0 o que me dá um zero em x=-15, o que supostamente me ensinaram foi que se a derivada não tiver zeros existe apenas um zero na função.
Assim a derivada tem zeros.
Alguém me pode ajudar a resolver isto ?
-
citadp
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Jun 02, 2012 13:11
- Formação Escolar: SUPLETIVO
- Área/Curso: Informática
- Andamento: cursando
por Russman » Qua Jun 20, 2012 10:47
citadp escreveu:Tenho uma função equação x^6+3x^5 = -1
Pedem-me, mostre que a equação tem uma raiz em ]-1, 0 [
Veja que para existir tal raíz a função

deve mudar de sinal entre

e

Então, para isto, basta selecionar um valor de

e outro de

e mostrar que

e

.
Para

eu escolho, por exemplo

. Assim,

.
Para

eu escolho, por exemplo

. Assim,

.
Logo, concluímos que existe uma raíz no intervalo

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por citadp » Qua Jun 20, 2012 10:54
Então não é necessário fazer a derivada da função neste caso ?
E quando nos pedem para mostrar que a função tem no máximo duas raízes ou exactamente duas raízes reais?
-
citadp
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Jun 02, 2012 13:11
- Formação Escolar: SUPLETIVO
- Área/Curso: Informática
- Andamento: cursando
por Russman » Sex Jul 06, 2012 15:49
citadp escreveu:Então não é necessário fazer a derivada da função neste caso ?
Não! Se a função é contínua então na troca de sinais ela precisa necessariamente passar pelo zero.
citadp escreveu:E quando nos pedem para mostrar que a função tem no máximo duas raízes ou exactamente duas raízes reais?
Depende da função que você estudará!
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [raízes de números complexos] Raízes de uma equação com grau
por karenfreitas » Seg Ago 22, 2016 19:08
- 1 Respostas
- 7893 Exibições
- Última mensagem por adauto martins

Sáb Ago 27, 2016 16:11
Números Complexos
-
- Raizes de equação de grau>=3
por spyderkill » Qua Mai 09, 2012 17:31
- 2 Respostas
- 2272 Exibições
- Última mensagem por pedroaugustox47

Sex Mai 11, 2012 02:33
Polinômios
-
- Raizes da equaçao do 2° grau
por hissamo » Sex Abr 10, 2015 15:57
- 1 Respostas
- 1662 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 11, 2015 17:14
Equações
-
- Raizes de uma equação de terceiro grau.
por 380625 » Dom Mar 27, 2011 13:58
- 3 Respostas
- 2829 Exibições
- Última mensagem por MarceloFantini

Dom Mar 27, 2011 18:09
Funções
-
- equação de segundo grau( descobrindo as raizes)
por arturmedeiros2010 » Qui Fev 13, 2014 15:34
- 1 Respostas
- 1234 Exibições
- Última mensagem por Russman

Sex Fev 14, 2014 00:15
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.