Página 1 de 1

[Taxa de variação] verificar o desenvolvimento .

MensagemEnviado: Sex Jun 01, 2012 20:02
por e8group
Quando duas resistências elétricas R1 e R2 são ligadas em paralelo ,a resistência total R é dada por
1/R =(1/R1) +(1/R2) . Se R1 e R2 aumentam à razão de 0,01 ohms/s e 0,02 ohms/s .Qual a taxa de variação de R no instante que R1 =30 ohms e R2 = 90 ohms ? ( resposta : 0,11/16 ohms/s) .

Obs.:( Desenvolvi este exercício ,entretanto minha resposta difere do gabarito) .

Gostaria de saber onde estou errando no meu desenvolvimento .

solução :
\frac{1}{R} = \frac{1}{R1} +\frac{1}{R2}  -> R = \frac{R1R2} {(R1+R2)}\rightarrow \frac{d}{dt}R = \frac{d}{dt}(\frac{R1R2}{R1+R2})\rightarrow\frac{d}{dt}R =\frac{ (R1+R2)\frac{d}{dt}(R1R2)-(R1R2)\frac{d}{dt}(R1+R2)}{(R1+R2)^2}= \frac{R2(\frac{d}{dt}R1)+R1(\frac{d}{dt}R2)}{R1+R2} - \frac{R1R2(\frac{d}{dt}R1+\frac{d}{dt}R2)}{(R1+R2)^2}

Fazendo as contas com os valores fornecidos ,achei d(R)/dt = 0,07/16 ohms/s .

Re: [Taxa de variação] verificar o desenvolvimento .

MensagemEnviado: Sáb Jun 02, 2012 03:33
por Russman
Acredito que você tenha complicado um pouco a derivação. Tente fazer assim:

\frac{1}{R} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \Rightarrow \frac{\mathrm{dR} }{\mathrm{d} t}= R^{2}\left (\frac{1}{R_{1}^{2}}\frac{\mathrm{dR_{1}} }{\mathrm{d} t} + \frac{1}{R_{2}^{2}}\frac{\mathrm{dR_{2}} }{\mathrm{d} t}  \right )\Rightarrow \frac{\mathrm{dR} }{\mathrm{d} t}= \left ( \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} \right )^{2}\left (\frac{1}{R_{1}^{2}}\frac{\mathrm{dR_{1}} }{\mathrm{d} t} + \frac{1}{R_{2}^{2}}\frac{\mathrm{dR_{2}} }{\mathrm{d} t}  \right )


Tente agora e veja se funciona.

Re: [Taxa de variação] verificar o desenvolvimento .

MensagemEnviado: Sáb Jun 02, 2012 10:24
por e8group
Russman ,realmente minha derivação foi mais complicada ,de fato usando R^(-1) =R1^(-1)+R2^(-1) e utilizando a( regra da cadeia) fica bem mais simples a derivação .sendo assim,agora a resposta estar de acordo com o gabarito .obrigado.

abraço!

Re: [Taxa de variação] verificar o desenvolvimento .

MensagemEnviado: Qui Mai 17, 2018 05:40
por vivik
Conseguiu responder? Poderia me ajudar?