• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral x diferencial!

Integral x diferencial!

Mensagempor Russman » Qua Mai 23, 2012 18:49

Eu gostaria de saber se vocês concordam ou não com o seguinte:

Eu quero calcular a integral de uma função do tipo f(t)dt, ou seja, uma função multiplicada por um diferencial.

Se I(t) = \int_{}^{}f(t) dt, então

\int_{}^{}f(t)dt dt = I(t)dt.


Posso pensar assim? Tenho motivos para achar que sim! Mas...

Obrigado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integral x diferencial!

Mensagempor Russman » Qui Mai 24, 2012 10:41

UP!

Ninguem? ;(
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integral x diferencial!

Mensagempor fraol » Sáb Mai 26, 2012 00:40

Interessante!

Meu palpite ... é que é possível, pensar assim.
Embora não tenha estudado isso diretamente, me parece mais uma questão de notação pois acabaríamos em uma integral iterada, não?

Aliás, a qual assunto ou aplicação você está relacionando isso?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Integral x diferencial!

Mensagempor nietzsche » Sáb Mai 26, 2012 17:14

Quando você escreve I(t) = \int_{}^{}f(t) dt, está querendo dizer o que com o lado direito?

Normalmente, a notação \int_{a}^{b}f(t) dt indica que sua variável de integração t está variando entre a e b.
Então se você multiplica por um diferencial dt, \int_{}^{}f(t)dt dt = I(t)dt você está multiplicando pelo que? O diferencial dt indica o que? Quais motivos que te levam a pensar que pode multplicar por dt? Eu creio que não pode.

Existem várias formas de se abordar integral: http://en.wikipedia.org/wiki/Integral
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral x diferencial!

Mensagempor MarceloFantini » Dom Mai 27, 2012 15:36

Não tenho domínio suficiente sobre o assunto, mas praticamente certeza que esta "operação" não existe. Um diferencial é um elemento do espaço dos tensores alternantes com a operação produto exterior. Isto significa que é anticomutativo, isto é, a \wedge b = - b \wedge a (como o produto vetorial). Quando são iguais, isto é nulo. Mas, mesmo para fazer isto, é necessário que você possa definir o produto exterior. A integral é um número, não se "aplica" um diferencial dentro dela.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral x diferencial!

Mensagempor Russman » Dom Mai 27, 2012 19:01

Obrigado, pessoal! ;D
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.