• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funcao Trigonometrica Calculo I

Funcao Trigonometrica Calculo I

Mensagempor James » Dom Mai 13, 2012 14:05

Alguem poderia responder este problem a por favor. obrigado
os pontos A e B sao opostos um ao outro nas margens de um rio reto que mede 4 Km de largura
O ponto C esta na mesma margem que B, mas a 5Km, rio abaixo de B.
Uma companhia telefonica deseja estender um cabo de A ao ponto P na margem oposta do rio e entao seguir reto ao longo da margem ate o ponto C.
Se o Custo por Km do cabo eh de 30% mais caro sob a agua do que em terra, que linha de cabo seria mais barato para a companhia e qual o seu custo?

Mostre:
*o modelo matematico, a funcao.
*o grafico da funcao que representa o modelamento matematico do problema.
*o dominio e imagem das variaveis envolvidas.
* determine a solucao aproximada de acordo com o grafico
James
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 13, 2012 13:56
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Funcao Trigonometrica Calculo I

Mensagempor LuizAquino » Ter Mai 15, 2012 19:40

James escreveu:Alguem poderia responder este problem a por favor. obrigado
os pontos A e B sao opostos um ao outro nas margens de um rio reto que mede 4 Km de largura
O ponto C esta na mesma margem que B, mas a 5Km, rio abaixo de B.
Uma companhia telefonica deseja estender um cabo de A ao ponto P na margem oposta do rio e entao seguir reto ao longo da margem ate o ponto C.
Se o Custo por Km do cabo eh de 30% mais caro sob a agua do que em terra, que linha de cabo seria mais barato para a companhia e qual o seu custo?

Mostre:
*o modelo matematico, a funcao.
*o grafico da funcao que representa o modelamento matematico do problema.
*o dominio e imagem das variaveis envolvidas.
* determine a solucao aproximada de acordo com o grafico


Essa questão já foi postada no tópico:
Calculo I
viewtopic.php?f=120&t=8323
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59