• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas]- Taxas Relacionadas

[Derivadas]- Taxas Relacionadas

Mensagempor Ana_Rodrigues » Dom Mai 13, 2012 09:33

Um farol giratório completa uma volta a cada 15 segundos. O farol está a 60m de P, o ponto mais próximo em uma praia retilínea. Determine a razão em que um raio de luz do farol está se movendo ao longo da praia em um ponto, Q, a 150m de P.


Resposta:

3480\pi m/min


Eu não estou conseguindo achar uma equação que relacione o ponto P e Q. Primeiro eu pensei na seguinte situação

O farol seria o centro das circunferências que passam pelos pontos P e Q e pensei nos pontos P, Q e o farol como pontos colineares, daí seria fácil achar o raio da circunferência que passa por Q, mas não necessariamente isso tem que ocorrer. Daí o máximo que consegui fazer foi achar a taxa de variação de P que é:

\frac{dp}{dt}= 480\pi m/min

Como posso achar uma equação que relacione P e Q?
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivadas]- Taxas Relacionadas

Mensagempor LuizAquino » Seg Mai 14, 2012 10:16

Ana_Rodrigues escreveu:Um farol giratório completa uma volta a cada 15 segundos. O farol está a 60m de P, o ponto mais próximo em uma praia retilínea. Determine a razão em que um raio de luz do farol está se movendo ao longo da praia em um ponto, Q, a 150m de P.

Resposta:
3480\pi m/min



Ana_Rodrigues escreveu:Eu não estou conseguindo achar uma equação que relacione o ponto P e Q. Primeiro eu pensei na seguinte situação

O farol seria o centro das circunferências que passam pelos pontos P e Q e pensei nos pontos P, Q e o farol como pontos colineares, daí seria fácil achar o raio da circunferência que passa por Q, mas não necessariamente isso tem que ocorrer. Daí o máximo que consegui fazer foi achar a taxa de variação de P que é:

\frac{dp}{dt}= 480\pi m/min

Como posso achar uma equação que relacione P e Q?


Note que P, Q e F não são colineares. Além disso, essa taxa de variação que você determinou não faz sentido.

Vejamos o início da resolução.

A figura abaixo ilustra o exercício.

figura.png
figura.png (11.64 KiB) Exibido 5338 vezes


Deseja-se saber o que acontece quando x = 150 m. Nesse caso, teremos S = Q.

Como o farol dá 1 volta completa a cada 15 segundos, temos que a taxa de variação do ângulo \alpha em relação ao tempo é igual a \frac{2\pi}{15}\textrm{ rad/s} . Em outras palavras, temos que \frac{d\alpha}{dt} = \frac{2\pi}{15}\textrm{ rad/s} .

Analisando o triângulo retângulo ilustrado na figura, temos que:

\textrm{tg}\,\alpha = \frac{x}{60} \implies x = 60 \, \textrm{tg}\,\alpha

Sendo assim, temos que:

\frac{dx}{dt} = \frac{dx}{d\alpha}\frac{d\alpha}{dt} = \left(60\sec^2\alpha\right)\frac{2\pi}{15}

Quando x = 150 m, no triângulo retângulo temos que:

\sec \alpha = \frac{1}{\cos\alpha} = \frac{1}{\frac{60}{\sqrt{60^2 + 150^2}}} = \frac{\sqrt{29}}{2}

Agora tente continuar o exercício a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)