por Cleyson007 » Qua Abr 18, 2012 16:47
Boa tarde a todos!
Por favor, como resolver o exercício abaixo?
Determine a região de integração da integral iterada

.
Aguardo retorno.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por DanielFerreira » Qua Abr 18, 2012 21:36
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Cleyson007 » Qui Abr 19, 2012 12:12
Bom dia Danjr!
Enxergo o intervalo de integração por você apresentado e o esboço da região de integração (em partes).
Por que a região hachurada deve estar acima da reta x=y ?
Aguardo retorno.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por DanielFerreira » Sáb Abr 21, 2012 14:47
Cleyson007 escreveu:Bom dia Danjr!
Enxergo o intervalo de integração por você apresentado e o esboço da região de integração (em partes).
Por que a região hachurada deve estar acima da reta x=y ?
Aguardo retorno.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Região de integração
por Cleyson007 » Sex Abr 13, 2012 23:00
- 5 Respostas
- 2449 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 14, 2012 00:19
Cálculo: Limites, Derivadas e Integrais
-
- Região de integração
por Cleyson007 » Qua Abr 18, 2012 11:43
- 1 Respostas
- 1386 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 14:20
Cálculo: Limites, Derivadas e Integrais
-
- Esboço da região de integração
por Cleyson007 » Sáb Abr 14, 2012 10:07
- 2 Respostas
- 2716 Exibições
- Última mensagem por Cleyson007

Dom Abr 15, 2012 10:09
Cálculo: Limites, Derivadas e Integrais
-
- Região de integração e esboço
por Cleyson007 » Sáb Abr 14, 2012 10:57
- 5 Respostas
- 5751 Exibições
- Última mensagem por DanielFerreira

Dom Abr 15, 2012 19:45
Cálculo: Limites, Derivadas e Integrais
-
- Integral iterada - Região de integração
por Cleyson007 » Sex Abr 13, 2012 23:40
- 9 Respostas
- 4203 Exibições
- Última mensagem por Cleyson007

Dom Abr 15, 2012 18:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.