• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites] calculo de limite envolvendo n e x

[limites] calculo de limite envolvendo n e x

Mensagempor Henrique Bueno » Dom Abr 15, 2012 14:31

O limite dado é o seguinte:

\lim_{x\to0}\frac{(1+ax)^{\frac{1}{N}}-(1+bx)^{\frac{1}{N}}}{x}}

sei que o resultado é \frac{a-b}{N} por recorrência, afinal fiz com N=2,N=3 e N=4 e foi isso que obtive, mas não consigo partir do limite dado e chegar nessa resposta

grato pela atenção
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [limites] calculo de limite envolvendo n e x

Mensagempor LuizAquino » Seg Abr 16, 2012 16:09

Henrique Bueno escreveu:O limite dado é o seguinte:

\lim_{x\to0}\frac{(1+ax)^{\frac{1}{N}}-(1+bx)^{\frac{1}{N}}}{x}}

sei que o resultado é \frac{a-b}{N} por recorrência, afinal fiz com N=2,N=3 e N=4 e foi isso que obtive, mas não consigo partir do limite dado e chegar nessa resposta


Esse limite é equivalente a:

\lim_{x\to 0} \dfrac{\sqrt[N]{1+ax} - \sqrt[N]{1+bx}}{x}

Para resolvê-lo, você precisa usar o seguinte produto notável:

a^k - b^k = (a - b)\left(a^{k-1} + a^{k-2}b + \ldots +  ab^{k-2} + b^{k-1}\right)

Note que no segundo fator temos uma soma que tem k parcelas. Para perceber melhor isso, observe por exemplo esse produto notável para k = 5:

a^5 - b^5 = (a - b)\left(a^4 + a^3b + a^2b^2 + ab^3 + b^4\right)

Vamos então multiplicar o numerador e o denominador da fração no limite por:

\left(\sqrt[N]{1 + ax}^{N-1} + \sqrt[N]{1 + ax}^{N-2}\sqrt[N]{1 + bx}  + \ldots + \sqrt[N]{1 + ax}\sqrt[N]{1 + bx}^{N-2} + \sqrt[N]{1 + bx}^{N-1}\right)

Note que essa expressão tem N parcelas. Além disso, ao multiplicar essa expressão pelo numerador, teremos o produto notável indicado anteriormente para k = N:

\left(\sqrt[N]{1 + ax} - \sqrt[N]{1 + bx}\right)\,\left(\sqrt[N]{1 + ax}^{N-1} + \sqrt[N]{1 + ax}^{N-2}\sqrt[N]{1 + bx}  + \ldots + \sqrt[N]{1 + ax}\sqrt[N]{1 + bx}^{N-2} + \sqrt[N]{1 + bx}^{N-1}\right)=

= \left(\sqrt[N]{1 + ax}\right)^N - \left(\sqrt[N]{1 + bx}\right)^N = (1 + ax) - (1 + bx) = (a-b)x

Agora note que quando x\to 0, temos que (1 + ax)\to 1 e (1 + bx)\to 1 .

Sendo assim, quando x\to 0 temos que aquela expressão que nós multiplicamos será igual a:

\left(\sqrt[N]{1}^{N-1} + \sqrt[N]{1}^{N-2}\sqrt[N]{1}  + \ldots + \sqrt[N]{1}\sqrt[N]{1}^{N-2} + \sqrt[N]{1}^{N-1}\right) =

=\underbrace{1 + 1  + \ldots + 1 + 1}_{N\textrm{ parcelas}} = N

Usando todas essas informações, temos que:

\lim_{x\to 0} \dfrac{\sqrt[N]{1+ax} - \sqrt[N]{1+bx}}{x} =

= \lim_{x\to 0} \dfrac{\left(\sqrt[N]{1 + ax}\right)^N - \left(\sqrt[N]{1 + bx}\right)^N}{x\left(\sqrt[N]{1 + ax}^{N-1} + \sqrt[N]{1 + ax}^{N-2}\sqrt[N]{1 + bx}  + \ldots + \sqrt[N]{1 + ax}\sqrt[N]{1 + bx}^{N-2} + \sqrt[N]{1 + bx}^{N-1}\right)}

= \lim_{x\to 0} \dfrac{(a-b)x}{x\left(\sqrt[N]{1 + ax}^{N-1} + \sqrt[N]{1 + ax}^{N-2}\sqrt[N]{1 + bx}  + \ldots + \sqrt[N]{1 + ax}\sqrt[N]{1 + bx}^{N-2} + \sqrt[N]{1 + bx}^{N-1}\right)}

= \lim_{x\to 0} \dfrac{a-b}{\sqrt[N]{1 + ax}^{N-1} + \sqrt[N]{1 + ax}^{N-2}\sqrt[N]{1 + bx}  + \ldots + \sqrt[N]{1 + ax}\sqrt[N]{1 + bx}^{N-2} + \sqrt[N]{1 + bx}^{N-1}}

= \dfrac{a-b}{\sqrt[N]{1}^{N-1} + \sqrt[N]{1}^{N-2}\sqrt[N]{1}  + \ldots + \sqrt[N]{1}\sqrt[N]{1}^{N-2} + \sqrt[N]{1}^{N-1}}

= \dfrac{a-b}{N}
Editado pela última vez por LuizAquino em Seg Abr 16, 2012 20:00, em um total de 1 vez.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limites] calculo de limite envolvendo n e x

Mensagempor Henrique Bueno » Seg Abr 16, 2012 19:08

Muito bom luiz! muito obrigado ! Com um exercício o senhor foi capaz de esclarecer muitas dúvidas minhas !
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 96 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}