• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Gráfico e limite para função maior inteiro

[Limite] Gráfico e limite para função maior inteiro

Mensagempor Raphaela_sf » Qui Abr 05, 2012 19:26

Exercício:

f: R-->R x--->y=[|x²|]
D f(x) = [-2,2]
\lim_{x->0}

Vizualisei o gráfico desta função maior inteiro, e existem valores negativos para x....

Até tentei fazer

-4\leq X^2  \prec-5 Como não existe raíz quadrada de valor negativo, a função não existiria para este intervalo (foi o que eu pensei). Mas no gráfico, existe!

Seria possível talvez realizar o inverso da função, colocando-se os possíveis valores de x, elevados a potência quadrada. Mas não imagino dessa forma, como daria certo!
O exercício pede o gráfico da função maior inteiro e o \lim_{x->0}

Muito obrigada!
Raphaela_sf
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Abr 05, 2012 18:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Limite] Gráfico e limite para função maior inteiro

Mensagempor LuizAquino » Qui Abr 05, 2012 20:53

Raphaela_sf escreveu:Exercício:

f: R-->R x--->y=[|x²|]
D f(x) = [-2,2]
\lim_{x->0}


Raphaela_sf escreveu:Vizualisei o gráfico desta função maior inteiro, e existem valores negativos para x....


O figura abaixo ilustra o gráfico da função.

figura.png
figura.png (6.84 KiB) Exibido 5908 vezes


Obviamente x assume valores negativos, já que x está no intervalo [-2, 2].

Raphaela_sf escreveu:Até tentei fazer

-4\leq X^2 \prec-5 Como não existe raíz quadrada de valor negativo, a função não existiria para este intervalo (foi o que eu pensei). Mas no gráfico, existe!



Primeiro, note que você tem que analisar \lfloor x^2 \rfloor e não x^2 .

Além disso, note que não existe x real tal que -4 \leq \lfloor x^2 \rfloor \leq -5 . Se você analisar o gráfico, perceberá que \lfloor x^2 \rfloor \geq 0 para qualquer x real.

Raphaela_sf escreveu:Seria possível talvez realizar o inverso da função, colocando-se os possíveis valores de x, elevados a potência quadrada. Mas não imagino dessa forma, como daria certo!


Essa função não é bijetora, portanto não possui inversa.

Raphaela_sf escreveu:O exercício pede o gráfico da função maior inteiro e o \lim_{x->0}


O gráfico já está ilustrado acima. Analisando esse gráfico, note que:

\lim_{x\to 0}f(x) = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 19 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}