• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivação]

[Derivação]

Mensagempor carolinenonato » Ter Abr 03, 2012 16:30

Derivar 2 vezes essa equação: \theta= 1,2*cos(4*\Pi*{t}^{3})

Essa questão caiu na minha prova e eu fiquei com muita duvida. o resultado da primeira derivação é: \theta= -12*\Pi*{t}^{2}*sen(4*\Pi*{t}^{3}) ????

E a segunda derivação eu fiz utilizando regra do produto mas ficou uma equação estranha e enfim, não consegui resolve-la direito.

Ajudem , por favor.

Obrigada.
carolinenonato
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Abr 03, 2012 16:09
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: [Derivação]

Mensagempor NMiguel » Ter Abr 03, 2012 18:37

Se \theta= 1,2 \cdot \cos(4 \pi {t}^{3})

então, \theta'= 1,2 \cdot -\sin(4 \pi {t}^{3}) \cdot (4 \pi {t}^{3})' = - 1,2 \cdot \sin(4 \pi {t}^{3}) \cdot (12 \pi {t}^{2})= - 14,4 \cdot \pi {t}^{2} \sin(4 \pi {t}^{3})

Quanto à segunda derivada temos:

\theta''= - 14,4 \cdot \pi( {t}^{2} \sin(4 \pi {t}^{3}))'' = -14,4 \cdot \pi ({t}^{2}' \sin(4 \pi {t}^{3}) + {t}^{2} \sin(4 \pi {t}^{3})') =

=-14,4 \cdot \pi (2t \sin(4 \pi {t}^{3}) + {t}^{2} \cos(4 \pi {t}^{3}) \cdot ( 4 \pi {t}^{3})')=

=-14,4 \cdot \pi (2t \sin(4 \pi {t}^{3}) + {t}^{2} \cos(4 \pi {t}^{3}) \cdot ( 12 \pi {t}^{2})) =

= -28,8 \cdot \pi t \sin(4 \pi {t}^{3}) - 172,8 \cdot \pi ^{2}  {t}^{4} \cos(4 \pi {t}^{3}))
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Derivação]

Mensagempor carolinenonato » Ter Abr 03, 2012 19:28

Obrigada NMiguel.

Caso fosse uma soma: \theta= 1.2 + cos(4.\Pi.{t}^{3}) ia ser a" mesma coisa" mas o 1,2 iria ser desconsiderado na primeira derivação por ser uma constante?
carolinenonato
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Abr 03, 2012 16:09
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: [Derivação]

Mensagempor MarceloFantini » Ter Abr 03, 2012 20:32

Sim, o método seria o mesmo. Quero lembrar que 1,2 não seria "desconsiderado", mas o fato que ao derivar uma constante temos zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 44 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}