• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema do confronto

Teorema do confronto

Mensagempor jemourafer » Dom Abr 01, 2012 20:23

Como posso resolver essa questão?

" Seja f: R->R uma função tal que: x².cos(x) \leq f(x) \leqx.sen(x),
para todo x \in \left(\frac{-\pi}{2},\frac{\pi}{2} \right). Prove que f é contínua em 0. "
jemourafer
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Abr 01, 2012 20:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Teorema do confronto

Mensagempor NMiguel » Dom Abr 01, 2012 21:00

Para mostrar que f é contínua em 0, precisamos mostrar que \lim_{x \to 0}f(x)=f(0)

Como x^{2}\cdot \cos x\leq f(x)\leq x\cdot \sin x, então 0^{2}\cdot \cos 0\leq f(0)\leq 0\cdot \sin 0, ou seja, 0\leq f(0)\leq 0. Daqui podemos concluir que f(0)=0

Da mesma forma, se x^{2}\cdot \cos x\leq f(x)\leq x\cdot \sin x, então, \lim_{x \to 0}x^{2}\cdot \cos x\leq \lim_{x \to 0}f(x)\leq \lim_{x \to 0}x\cdot \sin x

Como \lim_{x \to 0}x^{2}\cdot \cos x =0^{2}\cdot \cos 0 e \lim_{x \to 0}x\cdot \sin x = 0\cdot \sin 0, porque ambas são funções contínuas, então 0^{2}\cdot \cos 0\leq \lim_{x \to 0}f(x)\leq0\cdot \sin 0,ou seja, 0\leq \lim_{x \to 0}f(x)\leq 0

Daqui podemos concluir que \lim_{x \to 0}f(x)= 0
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 51 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}