por AlexandreTS » Sex Mar 30, 2012 18:01
Estou com dificuldades em um problema relacionado às mudanças de variáveis em integrais.
Vou dizer o exercício e o que eu pensei em fazer:
Determine o volume da região limitada pela superfície sqrt(x) + sqrt(y) + sqrt(z) = 1 e pelos planos coordenados.
Como o assunto é de mudanças de variáveis, resolvi começar por isso. Tenho um algoritmo pra resolução desses exercícios que é assim:
1) Fazer a mudança de variáveis para facilitar a integral;
2) Calcular o Jacobiano;
3) Definir as regiões R (no caso, para o sistema xyz) e S (no caso, para o sistema uvw)
4) Calcular a integral
Pois bem;
1) Fiz a seguinte mudança de variáveis: x = uˆ2, y = vˆ2, z = wˆ2
2) Calculei o jacobiano sem dificuldades já que a matriz é muito simples, todos os elementos acima e abaixo da diagonal principal são 0. O resultado é 8uvw
3) Nessa parte eu emperro. Sei que x, y e z variam de 0 a 1 no máximo, mas não consigo definir as regiões R nem a região S, tentei usar todas de 0 a 1, mesmo sabendo que estava errado, pra praticar a resolução da integral, mas essa parte eu acho fácil. O difícil e descobrir os limites de integração!
Pensei em fazer o seguinte: 0 <= u <= 1, 0 <= v <= 1-u, 0 <= w <= 1 - u - v, mas sinceramente não acho que faça muito sentido e resolvi não levar pra frente
Preciso muito de ajuda!
-
AlexandreTS
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Mar 30, 2012 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Sex Mar 30, 2012 18:48
AlexandreTS escreveu:Determine o volume da região limitada pela superfície sqrt(x) + sqrt(y) + sqrt(z) = 1 e pelos planos coordenados.
AlexandreTS escreveu:Como o assunto é de mudanças de variáveis, resolvi começar por isso. Tenho um algoritmo pra resolução desses exercícios que é assim:
1) Fazer a mudança de variáveis para facilitar a integral;
2) Calcular o Jacobiano;
3) Definir as regiões R (no caso, para o sistema xyz) e S (no caso, para o sistema uvw)
4) Calcular a integral
Pois bem;
1) Fiz a seguinte mudança de variáveis: x = uˆ2, y = vˆ2, z = wˆ2
2) Calculei o jacobiano sem dificuldades já que a matriz é muito simples, todos os elementos acima e abaixo da diagonal principal são 0. O resultado é 8uvw
3) Nessa parte eu emperro. Sei que x, y e z variam de 0 a 1 no máximo, mas não consigo definir as regiões R nem a região S, tentei usar todas de 0 a 1, mesmo sabendo que estava errado, pra praticar a resolução da integral, mas essa parte eu acho fácil. O difícil e descobrir os limites de integração!
Pensei em fazer o seguinte: 0 <= u <= 1, 0 <= v <= 1-u, 0 <= w <= 1 - u - v, mas sinceramente não acho que faça muito sentido e resolvi não levar pra frente
Note que:

Agora tente montar a região
S.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites de Integração] Como achar os limites de integração?
por Miine_J » Sáb Nov 10, 2018 03:13
- 2 Respostas
- 19431 Exibições
- Última mensagem por Miine_J

Dom Nov 11, 2018 08:17
Cálculo: Limites, Derivadas e Integrais
-
- Mudança de variável em exercício de integração
por Skyliner » Qua Nov 25, 2009 23:02
- 2 Respostas
- 3338 Exibições
- Última mensagem por Skyliner

Qui Nov 26, 2009 01:08
Cálculo: Limites, Derivadas e Integrais
-
- Integral Tripla - mudança de variáveis
por marinalcd » Sáb Abr 09, 2016 00:16
- 0 Respostas
- 1826 Exibições
- Última mensagem por marinalcd

Sáb Abr 09, 2016 00:16
Cálculo: Limites, Derivadas e Integrais
-
- Mudança de variaveis em integrais duplas e triplas
por luiz3d » Qui Out 08, 2009 17:09
- 0 Respostas
- 3734 Exibições
- Última mensagem por luiz3d

Qui Out 08, 2009 17:09
Cálculo: Limites, Derivadas e Integrais
-
- Separação de variáveis e Integração
por Jhenrique » Qui Mai 09, 2013 20:34
- 6 Respostas
- 3411 Exibições
- Última mensagem por Jhenrique

Sáb Mai 11, 2013 15:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
função demanda
Autor:
ssousa3 - Dom Abr 03, 2011 20:55
alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear
Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato
Assunto:
função demanda
Autor:
ssousa3 - Seg Abr 04, 2011 14:30
Gente alguém por favor me ensine a calcular a fórmula da função demanda

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.