• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite para resolver com raíz no numerador e denominador

Limite para resolver com raíz no numerador e denominador

Mensagempor jmoura » Sex Mar 23, 2012 23:20

Preciso de ajuda para resolver esse limite:
\lim_{x->0+}\frac{\sqrt[]{x+1}-1}{\sqrt[]{x}}

Tentei racionalizar por \sqrt[]{x+1}+1 no numerador e denominador, mas de nada adiantou!
jmoura
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mar 23, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Limite para resolver com raíz no numerador e denominador

Mensagempor Fabio Wanderley » Sáb Mar 24, 2012 00:14

jmoura escreveu:\lim_{x->0+}\frac{\sqrt[]{x+1}-1}{\sqrt[]{x}}

Tentei racionalizar por \sqrt[]{x+1}+1 no numerador e denominador, mas de nada adiantou!


Eu cheguei a isso:

\lim_{x\to 0+}\frac{\sqrt[]x}{\sqrt[]{x+1}+1}
\lim_{x\to 0+}\frac{\sqrt[]0}{\sqrt[]{0+1}+1}
\lim_{x\to 0+}\frac{\sqrt[]0}{2}
\lim_{x\to 0+}\frac{0}{2} = 0
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Limite para resolver com raíz no numerador e denominador

Mensagempor MarceloFantini » Sáb Mar 24, 2012 08:05

Temos

f(x) = \frac{\sqrt{x+1} -1}{\sqrt{x}} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1} = \frac{x+1-1}{\sqrt{x}(\sqrt{x+1}+1)} =\frac{x}{x^{\frac{1}{2}}(\sqrt{x+1}+1)} =

= \frac{x^{\frac{1}{2}}}{\sqrt{x+1}+1}.

Daí \lim_{x \to 0} f(x) = 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)