• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar o limite tendendo ao infinito.

Determinar o limite tendendo ao infinito.

Mensagempor Arthur_Bulcao » Sex Mar 23, 2012 17:34

Estou com dúvidas ao calcular o seguinte limite:

\lim_{x\,\rightarrow\,\infty}\;\frac{x}{\sqrt[3]{x^3+10}}

Se eu aplicar diretamente o valor de x, eu acabo tendo
\frac{\infty}{\infty} , que é um Símbolo de Indeterminação.

Qual seria um recurso indireto ideal para tal limite?

Eu havia pensado em fatorar a raiz, porém não sei como se faz fatoração de raízes com variáveis :-D .
Se pudessem me explicar como se faz a fatoração, e o limite, eu agradeço.


PS: A resposta do limite é 1.
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Determinar o limite tendendo ao infinito.

Mensagempor nietzsche » Sex Mar 23, 2012 18:07

Você pode por o x^3 em evidência.

\lim_{x\,\rightarrow\,\infty}\;\frac{x}{\sqrt[3]{x^3( 1+10/x^3)}}
=>
\lim_{x\,\rightarrow\,\infty}\;\frac{x}{x\sqrt[3]{ 1+10/x^3)}} = 1
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Determinar o limite tendendo ao infinito.

Mensagempor -civil- » Sex Mar 23, 2012 18:45

Outro jeito de resolver é assim:

\lim_{x\to\infty} \left\sqrt[3]{\frac{x^3}{(x^3 +10)}} = \sqrt[3]{\lim_{x\to\infty} \left\frac{x^3}{(x^3 +10)}}

Depois é só fatorar que vai dar 1 também.
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Determinar o limite tendendo ao infinito.

Mensagempor Arthur_Bulcao » Seg Mar 26, 2012 14:16

nietzsche escreveu:Você pode por o x^3 em evidência.

\lim_{x\,\rightarrow\,\infty}\;\frac{x}{\sqrt[3]{x^3( 1+10/x^3)}}
=>
\lim_{x\,\rightarrow\,\infty}\;\frac{x}{x\sqrt[3]{ 1+10/x^3)}} = 1


Realmente... Muito obrigado.
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Determinar o limite tendendo ao infinito.

Mensagempor Arthur_Bulcao » Seg Mar 26, 2012 14:18

-civil- escreveu:Outro jeito de resolver é assim:

\lim_{x\to\infty} \left\sqrt[3]{\frac{x^3}{(x^3 +10)}} = \sqrt[3]{\lim_{x\to\infty} \left\frac{x^3}{(x^3 +10)}}

Depois é só fatorar que vai dar 1 também.


Mas na hora de substituir o x pelo Infinito, ali:
\sqrt[3]{\lim_{x\to\infty} \left\frac{x^3}{(x^3 +10)}}

Não vai dar outra vez Infinito/Infinito, sendo outro SI?
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Determinar o limite tendendo ao infinito.

Mensagempor LuizAquino » Ter Mar 27, 2012 13:05

Arthur_Bulcao escreveu:Mas na hora de substituir o x pelo Infinito, ali:
\sqrt[3]{\lim_{x\to\infty} \left\frac{x^3}{(x^3 +10)}}

Não vai dar outra vez Infinito/Infinito, sendo outro SI?


Sim, há a indeterminação infinito/infinito. Para contorná-la, basta dividir o numerador e o denominador por x³.

\sqrt[3]{\lim_{x\to\infty} \frac{\left(x^3\right):x^3}{\left(x^3 +10\right):x^3}} = \sqrt[3]{\lim_{x\to\infty} \frac{1}{1 + \frac{10}{x^3}}} =  \sqrt[3]{\frac{1}{1 + 0}} = 1
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2650
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Determinar o limite tendendo ao infinito.

Mensagempor Arthur_Bulcao » Qua Mar 28, 2012 19:08

LuizAquino escreveu:
Arthur_Bulcao escreveu:Mas na hora de substituir o x pelo Infinito, ali:
\sqrt[3]{\lim_{x\to\infty} \left\frac{x^3}{(x^3 +10)}}

Não vai dar outra vez Infinito/Infinito, sendo outro SI?


Sim, há a indeterminação infinito/infinito. Para contorná-la, basta dividir o numerador e o denominador por x³.

\sqrt[3]{\lim_{x\to\infty} \frac{\left(x^3\right):x^3}{\left(x^3 +10\right):x^3}} = \sqrt[3]{\lim_{x\to\infty} \frac{1}{1 + \frac{10}{x^3}}} =  \sqrt[3]{\frac{1}{1 + 0}} = 1



Certo! Dúvida saciada. :-D
Obrigado
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: