• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar o limite tendendo ao infinito.

Determinar o limite tendendo ao infinito.

Mensagempor Arthur_Bulcao » Sex Mar 23, 2012 17:34

Estou com dúvidas ao calcular o seguinte limite:

\lim_{x\,\rightarrow\,\infty}\;\frac{x}{\sqrt[3]{x^3+10}}

Se eu aplicar diretamente o valor de x, eu acabo tendo
\frac{\infty}{\infty} , que é um Símbolo de Indeterminação.

Qual seria um recurso indireto ideal para tal limite?

Eu havia pensado em fatorar a raiz, porém não sei como se faz fatoração de raízes com variáveis :-D .
Se pudessem me explicar como se faz a fatoração, e o limite, eu agradeço.


PS: A resposta do limite é 1.
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Determinar o limite tendendo ao infinito.

Mensagempor nietzsche » Sex Mar 23, 2012 18:07

Você pode por o x^3 em evidência.

\lim_{x\,\rightarrow\,\infty}\;\frac{x}{\sqrt[3]{x^3( 1+10/x^3)}}
=>
\lim_{x\,\rightarrow\,\infty}\;\frac{x}{x\sqrt[3]{ 1+10/x^3)}} = 1
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Determinar o limite tendendo ao infinito.

Mensagempor -civil- » Sex Mar 23, 2012 18:45

Outro jeito de resolver é assim:

\lim_{x\to\infty} \left\sqrt[3]{\frac{x^3}{(x^3 +10)}} = \sqrt[3]{\lim_{x\to\infty} \left\frac{x^3}{(x^3 +10)}}

Depois é só fatorar que vai dar 1 também.
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Determinar o limite tendendo ao infinito.

Mensagempor Arthur_Bulcao » Seg Mar 26, 2012 14:16

nietzsche escreveu:Você pode por o x^3 em evidência.

\lim_{x\,\rightarrow\,\infty}\;\frac{x}{\sqrt[3]{x^3( 1+10/x^3)}}
=>
\lim_{x\,\rightarrow\,\infty}\;\frac{x}{x\sqrt[3]{ 1+10/x^3)}} = 1


Realmente... Muito obrigado.
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Determinar o limite tendendo ao infinito.

Mensagempor Arthur_Bulcao » Seg Mar 26, 2012 14:18

-civil- escreveu:Outro jeito de resolver é assim:

\lim_{x\to\infty} \left\sqrt[3]{\frac{x^3}{(x^3 +10)}} = \sqrt[3]{\lim_{x\to\infty} \left\frac{x^3}{(x^3 +10)}}

Depois é só fatorar que vai dar 1 também.


Mas na hora de substituir o x pelo Infinito, ali:
\sqrt[3]{\lim_{x\to\infty} \left\frac{x^3}{(x^3 +10)}}

Não vai dar outra vez Infinito/Infinito, sendo outro SI?
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Determinar o limite tendendo ao infinito.

Mensagempor LuizAquino » Ter Mar 27, 2012 13:05

Arthur_Bulcao escreveu:Mas na hora de substituir o x pelo Infinito, ali:
\sqrt[3]{\lim_{x\to\infty} \left\frac{x^3}{(x^3 +10)}}

Não vai dar outra vez Infinito/Infinito, sendo outro SI?


Sim, há a indeterminação infinito/infinito. Para contorná-la, basta dividir o numerador e o denominador por x³.

\sqrt[3]{\lim_{x\to\infty} \frac{\left(x^3\right):x^3}{\left(x^3 +10\right):x^3}} = \sqrt[3]{\lim_{x\to\infty} \frac{1}{1 + \frac{10}{x^3}}} =  \sqrt[3]{\frac{1}{1 + 0}} = 1
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2650
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Determinar o limite tendendo ao infinito.

Mensagempor Arthur_Bulcao » Qua Mar 28, 2012 19:08

LuizAquino escreveu:
Arthur_Bulcao escreveu:Mas na hora de substituir o x pelo Infinito, ali:
\sqrt[3]{\lim_{x\to\infty} \left\frac{x^3}{(x^3 +10)}}

Não vai dar outra vez Infinito/Infinito, sendo outro SI?


Sim, há a indeterminação infinito/infinito. Para contorná-la, basta dividir o numerador e o denominador por x³.

\sqrt[3]{\lim_{x\to\infty} \frac{\left(x^3\right):x^3}{\left(x^3 +10\right):x^3}} = \sqrt[3]{\lim_{x\to\infty} \frac{1}{1 + \frac{10}{x^3}}} =  \sqrt[3]{\frac{1}{1 + 0}} = 1



Certo! Dúvida saciada. :-D
Obrigado
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?