• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como resolver esta indeterminação?

Como resolver esta indeterminação?

Mensagempor joaofonseca » Qui Mar 22, 2012 14:57

Seja,

f(x)=\frac{e^x}{x+1}

Para encontrar a derivada de f em x=0 faço,

\lim_{x \to 0}\frac{f(x)-f(0)}{x-0}

que fica,

\lim_{x \to 0}\frac{\frac{e^x}{x+1}+1}{x}

Ao substituir obtenho uma indeterminação do tipo, 0/0. Sei que a técnica de levantamento desta indeterminhação passa por fatorar de forma a encontrar o fator comum.Mas eu não estou a ver como fatorar o numerador.

Graficamente já verifiquei que a derivada existe em x=0.

Podem me dar alguma pista de como começar?
Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Como resolver esta indeterminação?

Mensagempor LuizAquino » Qui Mar 22, 2012 17:55

joaofonseca escreveu:Seja,

f(x)=\frac{e^x}{x+1}

Para encontrar a derivada de f em x=0 faço,

\lim_{x \to 0}\frac{f(x)-f(0)}{x-0}

que fica,

\lim_{x \to 0}\dfrac{\frac{e^x}{x+1}+1}{x}


Na verdade, fica:

\lim_{x \to 0}\frac{\frac{e^x}{x+1} - 1}{x}

joaofonseca escreveu:Ao substituir obtenho uma indeterminação do tipo, 0/0.


Com a alteração que indiquei acima, de fato temos essa indeterminação.

joaofonseca escreveu:Sei que a técnica de levantamento desta indeterminação passa por fatorar de forma a encontrar o fator comum. Mas eu não estou a ver como fatorar o numerador.


Nesse caso a técnica não é por fatoração.

joaofonseca escreveu:Graficamente já verifiquei que a derivada existe em x=0.


Ok.

joaofonseca escreveu:Podem me dar alguma pista de como começar?


Note que o limite pode ser escrito como:

\lim_{x \to 0} \dfrac{e^x - x - 1}{x(x+1)}

Agora faça a substituição u = e^x - 1 . Desse modo, quando x\to 0 temos que u\to 0 . Além disso, temos que \ln(u + 1) = x .

Temos então que:

\lim_{x \to 0} \dfrac{e^x - x - 1}{x(x+1)} = \lim_{u \to 0} \dfrac{u - \ln(u + 1)}{[\ln(u + 1)][\ln(u + 1) + 1]}

Agora tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Como resolver esta indeterminação?

Mensagempor joaofonseca » Qui Mar 22, 2012 18:37

Obrigado pela ajuda.
Agora ficou assim:

\lim_{u\to 0} \frac{u-ln(u+1)}{ln(u+1)[ln(u+1)+1]}

\lim_{u\to 0} \frac{u}{ln(u+1)[ln(u+1)+1]}-\lim_{u\to 0}\frac{ln(u+1)}{ln(u+1)[ln(u+1)+1]}

\lim_{u\to 0} \frac{u}{ln(u+1)} \cdot \lim_{u\to 0}\frac{1}{ln(u+1)+1}-\lim_{u\to 0}\frac{1}{ln(u+1)+1}

\lim_{u\to 0} \frac{1}{\frac{ln(u+1)}{u}} \cdot \lim_{u\to 0}\frac{1}{ln(u+1)+1}-\lim_{u\to 0}\frac{1}{ln(u+1)+1}

\frac{1}{1} \cdot \lim_{u\to 0}\frac{1}{ln(u+1)+1}-\lim_{u\to 0}\frac{1}{ln(u+1)+1}

\lim_{u\to 0}\frac{1}{ln(u+1)+1}-\lim_{u\to 0}\frac{1}{ln(u+1)+1}=0

Com a tua dica, ficou facíl.Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 40 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?