por Cleyson007 » Ter Fev 28, 2012 17:36
Boa tarde!
Calcule
![\int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]dx \int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]dx](/latexrender/pictures/796e820b7b113741419913f2cebf2a53.png)
Gabarito:

Se alguém puder ajudar, agradeço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por LuizAquino » Ter Fev 28, 2012 17:56
Cleyson007 escreveu:Calcule
![\int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]dx \int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]dx](/latexrender/pictures/796e820b7b113741419913f2cebf2a53.png)
Gabarito:

O que você já tentou fazer?
Você tem dúvida em algum ponto específico do cálculo dessa integral?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Cleyson007 » Ter Fev 28, 2012 18:14
Boa tarde Luiz Aquino!
Resolvi mas não encontrei a mesma resposta que o gabarito apresenta como correto.
Não postei minha resolução porque não consegui fazer no LateX o intervalo ao resolver a parte interna da integral (segunda integral).
Seria mais ou menos isso --> |3
Pode me ajudar?
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por LuizAquino » Ter Fev 28, 2012 18:47
Cleyson007 escreveu:Resolvi mas não encontrei a mesma resposta que o gabarito apresenta como correto.
Eis a primeira parte da resolução:
![\int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]\,dx = \int_{0}^{2}\left[{x}^{2}\frac{y^2}{2}\right]_1^3 \,dx \int_{0}^{2}\left[\int_{1}^{3}{x}^{2}y\,dy \right]\,dx = \int_{0}^{2}\left[{x}^{2}\frac{y^2}{2}\right]_1^3 \,dx](/latexrender/pictures/a8ad3e60e28ef89c432f39fa0aeff0d5.png)

Agora tente finalizar.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Cleyson007 » Qui Mar 01, 2012 16:12
Boa tarde Luiz Aquino!
Luiz, na primeira parte estamos derivando em função de y, correto? Se derivamos em função de y, o x é constante, não é mesmo?
Em meu ponto de vista seria:
![\left[{x}^{2}y\frac{{y}^{2}}{2} \right]\Leftrightarrow\left[\frac{{x}^{2}{y}^{3}}{2} \right] \left[{x}^{2}y\frac{{y}^{2}}{2} \right]\Leftrightarrow\left[\frac{{x}^{2}{y}^{3}}{2} \right]](/latexrender/pictures/66cacf41107f8f13f238060da19a8881.png)
Por que não pode ser escrito da forma que escrevi acima?
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por LuizAquino » Qui Mar 01, 2012 16:27
Cleyson007 escreveu:Luiz, na primeira parte estamos derivando em função de y, correto? Se derivamos em função de y, o x é constante, não é mesmo?
Sim, correto.
Cleyson007 escreveu:Em meu ponto de vista seria:
![\left[{x}^{2}y\frac{{y}^{2}}{2} \right]\Leftrightarrow\left[\frac{{x}^{2}{y}^{3}}{2} \right] \left[{x}^{2}y\frac{{y}^{2}}{2} \right]\Leftrightarrow\left[\frac{{x}^{2}{y}^{3}}{2} \right]](/latexrender/pictures/66cacf41107f8f13f238060da19a8881.png)
Por que não pode ser escrito da forma que escrevi acima?
Se
c é uma constante, quanto vale a integral abaixo?

Ora, sabemos que:

Sendo assim, lembrando que a constante agora é
x² ao invés de
c, quanto seria a integral abaixo?

Ora, ela seria:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Dúvida com uma integral simples
por Leonardo Ribeiro » Sex Abr 03, 2015 20:02
- 1 Respostas
- 1997 Exibições
- Última mensagem por Leonardo Ribeiro

Sex Abr 03, 2015 21:06
Cálculo: Limites, Derivadas e Integrais
-
- [integral] duvida integral
por lucasdemirand » Ter Nov 26, 2013 17:47
- 0 Respostas
- 858 Exibições
- Última mensagem por lucasdemirand

Ter Nov 26, 2013 17:47
Cálculo: Limites, Derivadas e Integrais
-
- Duvida na Integral
por rodrigo ff » Sex Mar 23, 2012 17:44
- 1 Respostas
- 1443 Exibições
- Última mensagem por DanielFerreira

Sex Mar 23, 2012 19:01
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] - Dúvida
por digsydinner » Ter Mar 27, 2012 10:37
- 3 Respostas
- 1746 Exibições
- Última mensagem por LuizAquino

Sex Mar 30, 2012 00:07
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida em Integral
por Cleyson007 » Qua Abr 18, 2012 16:35
- 1 Respostas
- 862 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 14:36
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.