por Aliocha Karamazov » Dom Fev 26, 2012 11:52
Pessoal, o exerício é o seguinte:
Determine uma região no plano xy para o qual a equação diferencial teria uma única solução passando por um ponto

na região
Eu isolei

e ficou:

Para saber se existe solução única para uma equação diferencial, é preciso verificar dois critérios:
1. Em

,

deve ser contínua no intervalo
2.

também deve ser contínua
Bem, calulando

cheguei à expressão:

A minha dúvida é: como eu faço para encontrar a região do plano xy em que essas funções são contínuas? Eu ainda não aprendi cálculo com mais de uma variável. Na grade do meu curso, a disciplina de equações diferenciais vem antes. Isso me prejudica? Gostaria de uma ajuda. Obrigado.
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por LuizAquino » Dom Fev 26, 2012 13:39
Aliocha Karamazov escreveu:Determine uma região no plano xy para o qual a equação diferencial teria uma única solução passando por um ponto (x_{0},y_{0}) na região

Eu isolei y' e ficou:

Para saber se existe solução única para uma equação diferencial, é preciso verificar dois critérios:
1. Em

,

deve ser contínua no intervalo
2.

também deve ser contínua
Bem, calulando

cheguei à expressão:

Aliocha Karamazov escreveu:como eu faço para encontrar a região do plano xy em que essas funções são contínuas?
Note que em ambas as funções, a única descontinuidade ocorre em y = 2 ou y = -2. Nesses casos, apareceria uma divisão por zero.
Sendo assim, basta tomar qualquer região do plano xy que não contenha as retas y = 2 e y = -2.
Observação: Note que não seria necessário ter feito Cálculo com várias variáveis para perceber isso.
Aliocha Karamazov escreveu:Eu ainda não aprendi cálculo com mais de uma variável. Na grade do meu curso, a disciplina de equações diferenciais vem antes. Isso me prejudica?
Isso vai depender de como a disciplina de Equações Diferenciais será organizada. Se durante a disciplina for levado em consideração que você ainda não estudou Cálculo com várias variáveis, então os conteúdos serão adaptados para essa realidade. Quando for necessário, os conceitos serão definidos.
Por exemplo, se você só sabe derivar funções de uma variável, então será necessário explicar o que significa a derivada parcial de f(x, y) em relação a y. Isto é, o que significa

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Solução de uma Equação diferencial ordinaria
por thejotta » Seg Jan 14, 2013 00:03
- 0 Respostas
- 955 Exibições
- Última mensagem por thejotta

Seg Jan 14, 2013 00:03
Cálculo: Limites, Derivadas e Integrais
-
- [Equação diferencial] Solução incorreta?
por KleinIll » Qui Set 19, 2013 15:45
- 2 Respostas
- 1598 Exibições
- Última mensagem por KleinIll

Sáb Set 21, 2013 01:15
Cálculo: Limites, Derivadas e Integrais
-
- [Equação diferencial parcial] Ajuda para solução de EDP
por GustavoArtur » Qui Set 22, 2011 14:24
- 3 Respostas
- 2368 Exibições
- Última mensagem por GustavoArtur

Sex Set 23, 2011 12:58
Cálculo: Limites, Derivadas e Integrais
-
- [Equação Diferencial] Grau de homogeneidade e solução geral
por kayone » Dom Set 22, 2013 17:37
- 1 Respostas
- 1559 Exibições
- Última mensagem por Man Utd

Dom Jun 15, 2014 23:49
Equações
-
- [Números Complexos] Área da região do plano complexo.
por brunocav » Qua Mai 29, 2013 15:34
- 0 Respostas
- 1911 Exibições
- Última mensagem por brunocav

Qua Mai 29, 2013 15:34
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.