por Ana_Rodrigues » Qui Fev 23, 2012 21:06
O custo da produção de x quilogramas de ouro provenientes de uma nova mina é C=f(x) dólares.
c) você acha que os valores de f'(x) vão crescer ou decrescer a curto prazo? E a longo prazo? Explique.
Resposta
"Decresce a curto prazo; aumenta a longo prazo."
Eu não consegui responder a pergunta da letra c, e essa é a resposta do livro. Eu gostaria de saber por que o custo "Decresce a curto prazo e aumenta a longo prazo."
Agradeço desde já, a quem me ajudar a entender!
-
Ana_Rodrigues
- Usuário Parceiro

-
- Mensagens: 51
- Registrado em: Seg Nov 14, 2011 09:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Qui Fev 23, 2012 21:33
Ana_Rodrigues escreveu:O custo da produção de x quilogramas de ouro provenientes de uma nova mina é C=f(x) dólares.
c) você acha que os valores de f'(x) vão crescer ou decrescer a curto prazo? E a longo prazo? Explique.
Ana_Rodrigues escreveu:Resposta
"Decresce a curto prazo; aumenta a longo prazo."
Eu não consegui responder a pergunta da letra c, e essa é a resposta do livro. Eu gostaria de saber por que o custo "Decresce a curto prazo e aumenta a longo prazo."
A curto prazo, isto é, no início da operação da nova mina, será mais fácil ou mais difícil extrair o ouro? A quantidade de ouro extraída será grande ou pequena? E a longo prazo, isto é, depois de passar uma quantidade de tempo razoável?
Se você responder essas perguntas corretamente, então irá entender a lógica usada na resposta apresentada no gabarito.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Taxas de Variação]
por raimundoocjr » Sáb Jun 15, 2013 14:50
- 1 Respostas
- 770 Exibições
- Última mensagem por young_jedi

Sáb Jun 15, 2013 23:22
Cálculo: Limites, Derivadas e Integrais
-
- Taxas de Variação Relacionadas
por KSaito » Seg Nov 29, 2010 12:07
- 0 Respostas
- 1760 Exibições
- Última mensagem por KSaito

Seg Nov 29, 2010 12:07
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas-taxas de variação
por lucas_carvalho » Ter Dez 02, 2014 20:27
- 2 Respostas
- 3220 Exibições
- Última mensagem por lucas_carvalho

Qua Dez 03, 2014 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 1] Exercício de taxas de variação
por gust15 » Sex Dez 16, 2016 18:35
- 1 Respostas
- 2632 Exibições
- Última mensagem por adauto martins

Sáb Dez 17, 2016 15:48
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Taxas Relacionas
por wellkirby » Qui Mar 19, 2015 19:25
- 1 Respostas
- 6668 Exibições
- Última mensagem por Baltuilhe

Sex Mar 20, 2015 10:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.