• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problemas Quentes do Livro do James Stewart

Problemas Quentes do Livro do James Stewart

Mensagempor ARCS » Dom Fev 12, 2012 00:11

Estou martelando na minha cabeça como resolver essa integral com substituição (Consegui fazer com frações parciais). Alguém ai tem alguma dica !

\int_{}^{} \frac{1}{x^7-x} dx
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Problemas Quentes do Livro do James Stewart

Mensagempor fraol » Dom Fev 12, 2012 10:44

\int_{}^{} \frac{1}{x^7-x} dx


Dá pra fazer por subsituição.

Primeiro rearranjando a expressão do integrando:

\frac{1}{x^7-x} = \frac{1}{(x^6-1)x} = \frac{1}{(x^6-1)x} \left( {\frac{x^5}{x^5} \right) =  \frac{x^5}{(x^6-1)x^6}

E depois substituindo:

u = x^6 - 1 => du = 6x^5 então teremos x^5 = \frac{du}{6} e x^6 = u + 1.

Disso aí sai a resposta.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.