• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[integral utilizando substituição]

[integral utilizando substituição]

Mensagempor Giu » Sáb Fev 11, 2012 15:20

Eu tenho um exercício resolvido aqui, mas não entendi um dos passos da resolução que fizeram, foi resolvido pelo monitor, também não sei se está certo, vou escrever o exercício todo e vê o que vc acha!

O enunciado pede para calcular as integrais indefinidas usando as substituições indicadas:

\int_{}^{}dx/(e^x+1) , onde x = -ln t



resolução feita: dx= -1/t dt \int_{}^{}(1/[e^(^-^l^n^t^)+1]... coloquei só essa parte q é onde não entendi.

A minha dúvida é: [e^(^-^l^n^t^)+1] =  t^-^1+1 , que ficou assim : \int_{}^{}1/[(e^-^l^n^t) + 1] ... =  \int_{}^{} 1/[(t^-^1) + 1]...

desculpe se não conseguir entender a minha dúvida, é q não conseguir colocar a resposta toda

Giu
Giu
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Fev 08, 2012 15:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: Quimica Licenciatura
Andamento: cursando

Re: [integral utilizando substituição]

Mensagempor LuizAquino » Sáb Fev 11, 2012 18:06

Giu escreveu:O enunciado pede para calcular as integrais indefinidas usando as substituições indicadas:

\int_{}^{}dx/(e^x+1) , onde x = -\ln t


Giu escreveu:A minha dúvida é: [e^{(-\ln t)} + 1] = t^{-1}+1


Revise duas propriedades dos logaritmos:

(i) \log_b a^n = n\log_b a ;

(ii) b^{\log_b a} = a .

Desse modo, temos que:

e^{-\ln t} + 1 = e^{\ln t^{-1}} + 1 = t^{-1} + 1

Observação: Lembre-se que \ln t representa o logaritmo de t na base e . Ou seja, temos que \ln t é o mesmo que \log_e t .
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}