• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[TRANSFORMADA DE LAPLACE]

[TRANSFORMADA DE LAPLACE]

Mensagempor liviabgomes » Qui Dez 01, 2011 15:19

Cópia de img090.jpg
QUESTÃO


Não tenho nem ideia de como resolver.. alguem pode me ajudar? função periódica com transformada de laplace.
brigada!
liviabgomes
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Mai 30, 2011 16:04
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática licenciatura
Andamento: cursando

Re: [TRANSFORMADA DE LAPLACE]

Mensagempor LuizAquino » Seg Dez 05, 2011 10:19

liviabgomes escreveu:Não tenho nem ideia de como resolver.. alguem pode me ajudar? função periódica com transformada de laplace.


Eu recomendo que você leia o material:

Sodré, Ulysses. Transformadas de Laplace - Notas de aulas. Londrina, 2003.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.