por adecris » Sex Nov 11, 2011 13:01
Boa tarde.
Estou com uma dúvida em uma integral que envolve o produto de um módulo por uma função trigonométrica.
A integral é a seguinte:

Se alguém puder dar alguma dica, agradeço. Tentei dividir em uma soma de integrais, mas esse cosseno está me atrapalhando. x]
Obrigada.
-
adecris
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Nov 11, 2011 12:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia química
- Andamento: cursando
por LuizAquino » Sex Nov 11, 2011 17:12
adecris escreveu:A integral é a seguinte:

Se alguém puder dar alguma dica, agradeço. Tentei dividir em uma soma de integrais, mas esse cosseno está me atrapalhando. x]
O caminho é dividir a integral em duas.
Note que para

, temos que

.
Por outro lado, para

, temos que

.
Aplicando a definição de módulo, segue que:

Portanto, a integral será dividida da seguinte forma:

Para resolver cada uma dessas integrais, utilize integração por partes fazendo

e

.
Agora tente terminar o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral do módulo?
por Questioner » Dom Mai 16, 2010 18:15
- 2 Respostas
- 32555 Exibições
- Última mensagem por LuizAquino

Qui Abr 21, 2011 09:38
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Módulo
por iagoyotsui » Ter Set 24, 2013 19:18
- 1 Respostas
- 2022 Exibições
- Última mensagem por Russman

Ter Set 24, 2013 21:43
Cálculo: Limites, Derivadas e Integrais
-
- [integral definida com modulo]
por Giu » Qua Fev 08, 2012 16:08
- 1 Respostas
- 7285 Exibições
- Última mensagem por LuizAquino

Qua Fev 08, 2012 16:53
Cálculo: Limites, Derivadas e Integrais
-
- [integral envolvendo módulo]
por Fabio Wanderley » Sex Dez 14, 2012 11:14
- 3 Respostas
- 2551 Exibições
- Última mensagem por young_jedi

Sex Dez 14, 2012 16:04
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] com modulo nos limites de integração
por flavia_carolinee » Ter Jun 04, 2013 18:32
- 0 Respostas
- 2584 Exibições
- Última mensagem por flavia_carolinee

Ter Jun 04, 2013 18:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.