• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Lucro Máximo

[Derivada] Lucro Máximo

Mensagempor esquilowww » Ter Nov 08, 2011 20:00

Olá pessoal, gostaria novamente de agradecer pela ajuda nos tópicos anteriores.

Hoje trago 2 questões para determinação do lucro máximo, a primeira:

1) Uma certa indústria vende seu produto por R$ 100,00 a unidade. Se o custo da produção total diária, em R$, para x unidades for C(x) = 0,0025x² + 50x + 100.000 e se a capacidade de produção mensal for, de no máximo, 15000 unidades, quantas unidades desse produto devem ser fabricadas e vendidas mensalmente para que o lucro seja máximo?

Eu conseguir resolve-lá considerando venda = 100x e C(x). Logo L(x) 100x - C(x)

Para obter lucro máximo L'(x) = 0 e L"(x) < 0

Derivei a função L e encontrei o resultado de 10.000 unidades. Gostaria de saber se fiz corretamente.

Já a segunda questão tentei resolver pelo mesmo método porém não obtive exito.

2) Uma empresa opera num mercado em que o preço de venda é constante e igual a $20. seu custo marginal mensal é dado por 3x2 – 6x + 15 qual a produção que dá o máximo lucro. (a própria questão veio com 3x2, porém acredito que seja 3x²)

Gostaria de uma ajuda para resolve-lá.

Desde já agradeço.
esquilowww
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 14, 2011 23:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração/Ciências Contábeis
Andamento: cursando

Re: [Derivada] Lucro Máximo

Mensagempor LuizAquino » Qui Nov 10, 2011 11:41

esquilowww escreveu:1) Uma certa indústria vende seu produto por R$ 100,00 a unidade. Se o custo da produção total diária, em R$, para x unidades for C(x) = 0,0025x² + 50x + 100.000 e se a capacidade de produção mensal for, de no máximo, 15000 unidades, quantas unidades desse produto devem ser fabricadas e vendidas mensalmente para que o lucro seja máximo?


esquilowww escreveu:Para obter lucro máximo L'(x) = 0 e L"(x) < 0

Derivei a função L e encontrei o resultado de 10.000 unidades. Gostaria de saber se fiz corretamente.


Ok.

esquilowww escreveu:2) Uma empresa opera num mercado em que o preço de venda é constante e igual a $20. seu custo marginal mensal é dado por 3x2 – 6x + 15 qual a produção que dá o máximo lucro. (a própria questão veio com 3x2, porém acredito que seja 3x²)


esquilowww escreveu:Já a segunda questão tentei resolver pelo mesmo método porém não obtive exito.


Provavelmente você esqueceu de um detalhe: por definição o custo marginal é equivalente a derivada do custo. Ou seja, se C(x) é o custo, então pelos dados do exercício o custo marginal será C^\prime(x) = 3x^2 - 6x + 15 .

Isso significa que o custo C(x) deve ser algo como C(x)=x^3 - 3x^2 + 15x + k (onde k é uma constante qualquer).

Supondo que para produzir 0 unidades não haverá custo, devemos ter que C(0)=0. Sendo assim, chegamos a conclusão que a constante k deve ser nula.

Em resumo: para que o custo marginal seja igual ao que foi dado no exercício e supondo C(0)=0, precisamos que o custo seja dado por C(x)=x^3 - 3x^2 + 15x .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}