• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Declive da reta secante

Declive da reta secante

Mensagempor joaofonseca » Ter Nov 08, 2011 12:04

Tenho estado a estudar uma abordagem às derivadas do ponto de vista do declive da reta secante a dois pontos.Calculando o limite desse mesmo declive num ponto.
\lim_{x \mapsto a}=\frac{f(x)-f(a)}{x-a}

Quando x \mapsto a o declive da reta secante aproxima-se do declive da reta tangente a a.Ou seja do valor da derivada no ponto x=a.

Quando o calculo do limite não corre bem, as coisas começam a complicar-se!
Seja a função f(x)=2x^2-ln(x). Calcule-se o declive da reta tangente no ponto (1,2), utilizando a primeira formula:

\lim_{x \mapsto 1}\frac{2x^2-ln(x)-2}{x-1}=

\lim_{x \mapsto 1}\frac{2(x^2-1)-ln(x)}{x-1}=

\lim_{x \mapsto 1}\frac{2(x-1)(x+1)-ln(x)}{x-1}=

\lim_{x \mapsto 1}2(x+1)-ln(x)=2 \cdot 2-ln(1)= 4-0=4

Seria de concluir que a derivada da função no ponto x=1 seria 4!!!
Mas quando calculo a derivada através das regras de diferenciação obtenho:

f'(x)=4x -\frac{1}{x}

ou seja,

f'(1)=4-1=3

Em qual deles errei?
Após algumas simulações gráficas, verifiquei que foi no limite que errei, mas por mais que me esforce não sei onde.Podem ajudar-me?
Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Declive da reta secante

Mensagempor MarceloFantini » Ter Nov 08, 2011 16:31

Você dividiu apenas o lado direito por x-1, e não tudo. O resultado deveria ser o limite de 2(x+1) - \frac{\ln x}{x-1}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Declive da reta secante

Mensagempor joaofonseca » Ter Nov 08, 2011 17:30

Obrigado! Não estava mesmo exergando.
No entanto mesmo assim o resultado do limite continua na mesma, pois \frac{ln(x)}{x-1} resulta em \frac{0}{0} quando se substituí x por 1.
Foi então, que após alguma pesquisa, e no seguimento da definição de derivada que estou a utilizar, descobri:

f'(1)=\frac{f(x)-f(1)}{x-1}=\frac{ln(x)-ln(1)}{x-1}=\frac{ln(x)}{x-1}

Ou seja a expressão reflete a derivada da função ln(x) no ponto x=1.E como sabemos, será igual a 1.
Assim:

\lim_{x \mapsto 1}\frac{2x^2-ln(x)-(2-ln(1))}{x-1}=(...)=\lim_{x \mapsto 1}2(x+1)-\lim_{x \mapsto 1}\frac{ln(x)}{x-1}=2 \cdot 2-1=3

Agora sim, coincide com o valor que obtive através das regras de diferenciação!!!!
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Declive da reta secante

Mensagempor LuizAquino » Sex Nov 11, 2011 10:30

joaofonseca escreveu:Foi então, que após alguma pesquisa, e no seguimento da definição de derivada que estou a utilizar, descobri:
f'(1)=\frac{f(x)-f(1)}{x-1}=\frac{ln(x)-ln(1)}{x-1}=\frac{ln(x)}{x-1}


Correção:

f^\prime (1)=\lim_{x\to 1} \frac{f(x)-f(1)}{x-1} = \lim_{x\to 1} \frac{\ln x - \ln 1}{x-1}= \lim_{x\to 1} \frac{\ln x}{x-1}

Para calcular esse limite, faça a substituição u = x - 1 . Como x\to 1, teremos que u \to 0 . Portanto, podemos escrever:

f^\prime(1) = \lim_{u\to 0} \frac{\ln (u+1)}{u}

Note que podemos ainda escrever:

f^\prime(1) = \lim_{u\to 0} \frac{1}{u} \ln (u+1)

Utilizando propriedades de logaritmo, temos que:

f^\prime(1) = \lim_{u\to 0}  \ln (u+1)^{\frac{1}{u}}

Como a função logaritmo natural é contínua em u+1 quando u\to 0, o limite poderá "entrar" na função:

f^\prime(1) =\ln \left[\lim_{u\to 0}   (u+1)^{\frac{1}{u}}\right]

Lembrando-se do limite exponencial fundamental, temos que:

f^\prime(1) = \ln e

Portanto, como já era esperado, obtemos que:

f^\prime(1) = 1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 53 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.