• Anúncio Global
    Respostas
    Exibições
    Última mensagem

esboço de grafico da funçao

esboço de grafico da funçao

Mensagempor lilianmatos » Qua Nov 02, 2011 21:27

Preciso concluir os 8 passos para esboçar o grafico da funçao: (x^2-1)^3
parei no sexto passo que é determinar a concavidade e os pontos de inflexão, com a derivada 2ª encontrei os seguintes resultados:
x>1 concava para cima e X<-1 concava para baixo. Nao sei se esta certo e o que posso concluir com isso, não tenho ponto de inflexao?
lilianmatos
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Nov 02, 2011 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: esboço de grafico da funçao

Mensagempor joaofonseca » Qui Nov 03, 2011 20:38

Mas quais foram os 6 passos?!?! *-)

Comecemos pelo principio:

A função f(x)=(x^2-1)^3 tem dois zeros de multiplicidade 3. São eles -1 e 1.

A derivada de f é f'(x)=6x(x^4-2x^2+1).Quais são os zeros?

6x(x^4-2x^2+1)=0
6x=0 \vee x^4-2x^2+1=0.

Utilizemos um artificio, y=x^2.Fica:

6x=0 \vee y^2-2y+1=0

6x=0 \vee (y-1)^2=0

6x=0 \vee y=1

Voltando a trás com o artificio:

6x=0 \vee x^2=1

x=0 \vee x=1 \vee x=-1

Estes são os zeros da derivada!

A 2º derivada é 30x^4-36x^2+6 Quais os zeros?
Outra vez um artificio.

30y^2-36y+6=0

Dividimos tudo por 6.

5y^2-6y+1=0

(5y-1)(y-1)=0

y=\frac{1}{5} \vee y=1

Voltamos com o artificio a trás:

x^2=\frac{1}{5} \vee x^2=1

x=\sqrt{\frac{1}{5}} \vee x=-{\sqrt\frac{1}{5}} \vee x=-1 \vee x=1

Agora basta estudar o sinal da 2ª derivada.Eu escolhi a máquina grafica:

2_Derivada.jpg
2_Derivada.jpg (12.11 KiB) Exibido 2031 vezes


Como se pode observar, seja analiticamente, seja graficamente, os pontos de inflexão da função f verificam-se nos zeros da 2ª derivada.Pois é aqui que o gráfico da 2ª derivada muda de sinal!
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D