• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Continuidade] Demonstração

[Continuidade] Demonstração

Mensagempor Aliocha Karamazov » Sáb Out 29, 2011 14:20

Seja f(x)=x+\frac{1}{x}. Prove que

a) |f(x)-f(1)|\leq\left(1+\frac{1}{x}\right)|x-1|, para todo x>0
b)  |f(x)-f(1)|\leq3|x-1|, para x>\frac{1}{2}
c) Use a e b para provar por \epsilon e \delta que f é contínua em x=1

Eu pensei em algo que pudesse ajudar na resolução do item a). Foi o seguinte:

\lim_{x\to0^{+}} f(x)=\lim_{x\to0^{+}}\left(x+\frac{1}{x}\right)=\lim_{x\to0^{+}}x+\lim_{x\to0^{+}}\left(\frac{1}{x}\right)=0+\infty=+\infty

Como \lim_{x\to0^{+}} f(x)+\infty, temos, pela definição de limites laterais e pela definição de limites no infinito, que:

\forall\epsilon>0, \exists\delta>0 tal que

0<x<0+\delta \Rightarrow f(x)>\epsilon, ou seja:

x<\delta \Rightarrow f(x)>\epsilon

Mas eu não sei como, e nem se é possível, usar esse resultado para provar a afirmação do item a).

Alguém pode me ajudar?
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Continuidade] Demonstração

Mensagempor MarceloFantini » Sáb Out 29, 2011 16:16

Teremos f(1) = 1 + 1 = 2, e daí |f(x) - f(1)| = \left\vert x + \frac{1}{x} - 2 \right\vert = \left\vert (x-1) + \frac{1}{x} \left(1 - x\right)\right\vert. Agora usando a desigualdade triangular:

\left\vert (x-1) + \frac{1}{x} \left(1 - x\right)\right\vert \leq |x-1| + \frac{1}{x} |x-1| = \left( 1 + \frac{1}{x} \right) |x-1|

E fica provado o item a). Para o item b), basta perceber que para x > \frac{1}{2} temos \frac{1}{x} < 2 e daí 1 + \frac{1}{x} < 3, e portanto pelo item a) concluimos |f(x) - f(1)| \leq 3|x-1|.

Tente fazer o item c).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Continuidade] Demonstração

Mensagempor Aliocha Karamazov » Sáb Out 29, 2011 19:09

Eu somei as duas desigualdades e, depois de algumas manipulações, ficou:

|f(x)-f(1)|\leq|x-1|\left(2+\frac{1}{2x}\right)

Como, para provar a continuidade em 1 usando \epsilon e \delta, tenho que chegar numa expressão:

|x-1|<\delta \Rightarrow |f(x)-f(1)|< \epsilon

Poderia escrever |f(x)-f(1)|< \delta\left(2+\frac{1}{2x}\right)

No entanto, eu tenho que restringir \left(2+\frac{1}{2x}\right)

Pois não pode ficar dependente de x

Poderia estimar, por exemplo \delta =1 e analisar o comportamento de \left(2+\frac{1}{2x}\right) no intervalo 0<x<2. Mas essa função vai pro infinito para valores de x próximos de 0.

Não sei como prosseguir daqui. Poderia me ajudar?
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Continuidade] Demonstração

Mensagempor MarceloFantini » Sáb Out 29, 2011 20:48

Devemos mostrar que dado \varepsilon >0, podemos encontrar \delta = \delta(\varepsilon) > 0 tal que |x-a| < \delta \implies |f(x) - f(a)| < \varepsilon. Pelo item b), isto nos sugere que tomemos \delta = \frac{\varepsilon}{3}. Assim, teremos que pelo item b que:

|f(x) - f(1)| \leq 3|x-1| < 3 \delta = 3 \cdot \frac{\varepsilon}{3} = \varepsilon

O que conclui a demonstração.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Continuidade] Demonstração

Mensagempor Aliocha Karamazov » Sáb Out 29, 2011 21:11

Entendi. Mais simples do que pensava.

Eu descobri que essa questão é do Guidorizzi. Olhei no gabarito e a resposta é \delta=min \frac{\epsilon}{3},\frac{1}{2}}.

Você poderia me falar por quê?
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}