por elizandro » Dom Out 23, 2011 19:24
-
elizandro
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Out 22, 2011 22:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por LuizAquino » Seg Out 24, 2011 16:47
Ao invés de "ganhar o peixe", que tal "aprender a pescar"?
Para estudar o passo a passo da resolução, faça o seguinte:
- Acesse a página: http://www.wolframalpha.com/
- No campo de entrada, digite:
- Código: Selecionar todos
derivative of (3x + 1/(x^2))^3
- Clique no botão de igual ao lado do campo de entrada.
- Após a derivada ser calculada, clique no botão "Show steps" ao lado do resultado.
- Pronto! Agora basta estudar a resolução.
Para estudar as outras derivadas, basta mudar o segundo passo para:
- Código: Selecionar todos
derivative of sqrt(3x + (x-1)^2)
- Código: Selecionar todos
derivative of ((2x+1)^101)*(5x^2-7)
ObservaçãoO carácter  que apareceu na sua mensagem deve-se ao fato de você ter usado o atalho do teclado para digitar o quadrado no LaTeX, isto é, você escreveu algo como x². O correto seria usar o comando x^2 dentro do LaTeX. Isso produz como resultado:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Exercício de derivadas]
por elizandro » Sáb Out 22, 2011 22:56
- 6 Respostas
- 3485 Exibições
- Última mensagem por LuizAquino

Seg Out 24, 2011 11:38
Cálculo: Limites, Derivadas e Integrais
-
- Exercicio de derivadas
por Jorge Luiz » Sex Mai 13, 2016 22:08
- 1 Respostas
- 2657 Exibições
- Última mensagem por adauto martins

Seg Mai 16, 2016 13:05
Cálculo: Limites, Derivadas e Integrais
-
- Exercício de derivadas - Guidorizzi
por -civil- » Qui Mai 19, 2011 10:26
- 2 Respostas
- 3903 Exibições
- Última mensagem por -civil-

Seg Mai 23, 2011 00:24
Cálculo: Limites, Derivadas e Integrais
-
- [cálculo de derivadas] Ajuda em exercicio
por Ljoe » Ter Jul 12, 2011 12:49
- 3 Respostas
- 2826 Exibições
- Última mensagem por Fabio Cabral

Qua Jul 13, 2011 10:52
Cálculo: Limites, Derivadas e Integrais
-
- [Aplicações Derivadas] Dúvida exercício
por MrJuniorFerr » Dom Out 21, 2012 14:57
- 6 Respostas
- 13246 Exibições
- Última mensagem por MrJuniorFerr

Dom Out 21, 2012 20:24
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.