• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Correção de questões de integrais

Correção de questões de integrais

Mensagempor valeuleo » Seg Out 03, 2011 11:59

Tentei resolver as seguintes questões e gostaria que analisassem se as resoluções (resultados e procedimentos) estão corretos. Segue:

\int_{}^{}\frac{{x}^{2}}{{x}^{2}+x-6}

Sabendo que:

\frac{P(x)}{(x-\alpha).(x-\beta)}=Q(x) + \frac{R(x)}{(x-\alpha).(x-\beta)}

Tenho que:

\frac{{x}^{2}}{{x}^{2}+x-6}=1+\frac{\left(-x+6 \right)}{{x}^{2}+x-6}

Então:

\int_{}^{}\left[ 1+\frac{\left(-x+6 \right)}{{x}^{2}+x-6}\right]dx = \int_{}^{}1 dx+\int_{}^{}\frac{(-x+6)}{{x}^{2}+x-6}dx

Fazendo A e B:
\frac{-x+6}{{x}^{2}+x-6}=\frac{A}{(x+3)}+\frac{B}{(x-2)}

-x+6=A(x-2)+B(x+3)

Fazendo x=2, obtemos B = 4/5 e com x=-3 obtemos A=-9/5

Fazendo as integrais:
x+\int_{}^{}\frac{\frac{-9}{5}}{(x+3)}dx+\int_{}^{}\frac{\frac{4}{5}}{(x-2)}dx

Temos então:

x-\frac{9}{5}ln\left|(x+3) \right|+\frac{4}{5}ln\left|(x-2) \right|

(Depois posto as outras resoluções)
Grato
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Correção de questões de integrais

Mensagempor LuizAquino » Seg Out 03, 2011 16:11

Ao invés de "ganhar o peixe", que tal "aprender a pescar"?

Para conferir a sua resolução, siga os passos:

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate (x^2)/(x^2+x-6) dx
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Basta conferir a resolução.

Observação
Obviamente, a resolução pode variar um pouco em relação a sua.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Correção de questões de integrais

Mensagempor valeuleo » Seg Out 03, 2011 16:40

Esse site resolve de uma maneira "não acadêmica rsrs". O meu deu diferente, mas os procedimentos da página são outros.
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Correção de questões de integrais

Mensagempor LuizAquino » Seg Out 03, 2011 17:16

valeuleo escreveu:Esse site resolve de uma maneira "não acadêmica rsrs". O meu deu diferente, mas os procedimentos da página são outros.

Não "acadêmica"?! A integral foi resolvida aplicando o método das frações parciais da mesma forma que você fez!

A técnica foi aplicada logo no início:

For the integrand \frac{x^2}{x^2+x-6}, do long division:
= \int -\frac{9}{5(x+3)} + \frac{4}{5(x-2)} + 1 \, dx


Eis a resposta final indicada na página:

\int \frac{x^2}{x^2+x-6} dx = x + \frac{4}{5}\log(2-x) - \frac{9}{5}\log(x+3) + \textrm{constant}


Sendo que na própria página há um aviso:
\log( x ) is the natural logarithm


Considerando-se que onde há parênteses na solução o que temos na verdade são módulos e que nessa página \log x representa \ln x, a solução apresentada é a mesma que a sua!

Observação

Lembre-se que |x - 2| = |2 - x|.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Correção de questões de integrais

Mensagempor valeuleo » Seg Out 03, 2011 17:31

Obrigado... eu tinha esquecido do "integrate"
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}