O raio de um cone circular reto aumenta 1,8 pol/s mas a altura decresce a taxa de 2,5 pol/s. Qual a taxa de variação do volume do cone, quando o raio vale 120 pol e altura h = 140 pol?
Eu li a matéria no Stewart mas não entendi muito bem. Eu simplesmente calculei as derivadas parciais em relação ao volume, no ponto (120,140). Está certo resolver desse jeito?

.
.

,
,
e
.
em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.