• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]

[Derivada]

Mensagempor thiago toledo » Qui Set 22, 2011 16:04

Como resolvo este exercicio abaixo?

Achar z = f (x, y), se:

\frac{\partial z}{\partial x}=\frac{1}{x}+y{e}^{xy}+2x


f(1,y)=ln(y)+{e}^{y}+2y
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Derivada]

Mensagempor LuizAquino » Qui Set 22, 2011 18:40

thiago toledo escreveu:Achar z = f (x, y), se:

\frac{\partial z}{\partial x}=\frac{1}{x}+y{e}^{xy}+2x


f(1,\,y) = \ln(y)+{e}^{y}+2y


Primeiro, calcule a integral em relação a x em ambos os membros dessa equação. Nesse caso, você vai considerar y como se fosse uma constante.

\int \frac{\partial z}{\partial x} dx=\int \frac{1}{x}+y{e}^{xy}+2x\,dx \Rightarrow z = \ln |x| + e^{xy} + x^2 + c(y) \Rightarrow f(x,\,y) = \ln |x| + e^{xy} + x^2 + c(y)

Note que após efetuar essa integração aparece uma "constante" c, que na verdade é uma função de y (isto é, temos c(y)).

Agora, use o fato de que f(1,\,y) = \ln(y)+{e}^{y}+2y para determinar c(y).

Após ter determinado c(y), basta substituir em f(x,\,y) = \ln |x| + e^{xy} + x^2 + c(y) e você terá encontrado a função f(x, y).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.