por beel » Dom Set 11, 2011 21:02
Quando se tem um limite do tipo
![\lim_{x\rightarrow0}\frac{\sqrt[]{x^2 - 2x + 4}}{- 3x + 1} \lim_{x\rightarrow0}\frac{\sqrt[]{x^2 - 2x + 4}}{- 3x + 1}](/latexrender/pictures/e903865b74b3b4d2506a0285782ba111.png)
o que se faz? me ensinaram que tem que dividir numerador e denominador pela raiz do maior coeficiente, é isso mesmo?fazendo isso meu resultado de 1/3.
Quando eu tenho um limite com raiz, eu só posso multiplicar numerador e denominador pelo inverso da raiz ( trocando o sinal, por exemplo
![(\sqrt[]{x + 1} )(\sqrt[]{x - 1}) (\sqrt[]{x + 1} )(\sqrt[]{x - 1})](/latexrender/pictures/755b42f91046d32a9c9366b4766fab28.png)
) quando eu tiver uma variavel e uma constante?Nesse limite que eu estou em duvida por exemplo ( que a raiz esta em toda a equação) eu nao poderia fazer isso certo?
Nao sei se ficou claro minha duvida, qualquer coisa tento explicar melhor
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Aliocha Karamazov » Dom Set 11, 2011 22:51
Esse caso é mais simples do que você pensa. Substitua 0 no lugar do x. Você precisa utilizar outras técnicas (como essa de multiplicar o numerador e o denominador pelo conjugado), quando a substituição direta leva a casos de inderterminação. Nesse exemplo, isso não ocorre.
Tente fazer e avise se não entender algo.
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por beel » Dom Set 18, 2011 21:06
Mas se eu substituir, o limite da 2...e o resultado realmente é 1/3
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Neperiano » Dom Set 18, 2011 22:16
Ola
Substituindo o 0 no lugar do x, fica
Raiza de 4/1
Logo fica 2
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por beel » Dom Set 18, 2011 22:27
Exato, como eu falei, mas o resultado ( multiplicando pela raiz como eu falei) dá 1/3 o que é a resposta correta...nessa caso, se voce substituir direto dá diferente se voce fatorar
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Aliocha Karamazov » Dom Set 18, 2011 22:36
isanobile escreveu:Exato, como eu falei, mas o resultado ( multiplicando pela raiz como eu falei) dá 1/3 o que é a resposta correta...nessa caso, se voce substituir direto dá diferente se voce fatorar
Você está fazendo algo errado. A resposta correta é 2. Coloque sua resolução para que eu possa ver onde está o problema.
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por Neperiano » Seg Set 19, 2011 12:04
Ola
Mas não é para fatorar neste caso, você só fatora se por acaso der 0/0 por exemplo, tambem poderia usar l'hopital neste caso.
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por beel » Qua Set 21, 2011 13:18
Realmente, se substituirmos direto dá 2, mas nas respostas do exercicio nao tinha essa opção, eram apenas 1/3, - 1/3, +- 1/3 e 1 se nao me engano, mas nao tinha 2 ( nao consigo visualizar as questoes porque elas sao como se fossem testes online, e se encerram)...nao estou com a resolução aqui, mas tentarei fazer novamente pela fatoração e posto aqui.
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE]raiz/ duvida
por beel » Dom Set 11, 2011 15:09
- 6 Respostas
- 2798 Exibições
- Última mensagem por beel

Dom Out 16, 2011 16:59
Cálculo: Limites, Derivadas e Integrais
-
- Limite - como resolver um lim quando temos raiz^2 e raiz^3.
por Monica santos » Sex Ago 16, 2013 14:22
- 4 Respostas
- 3848 Exibições
- Última mensagem por young_jedi

Sex Ago 16, 2013 19:01
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo: limite com raiz dentro de raiz
por roberto_trebor » Sáb Fev 15, 2014 20:45
- 1 Respostas
- 2093 Exibições
- Última mensagem por Man Utd

Dom Fev 16, 2014 17:58
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] raiz
por beel » Ter Set 06, 2011 13:48
- 5 Respostas
- 2487 Exibições
- Última mensagem por beel

Sex Set 09, 2011 16:52
Cálculo: Limites, Derivadas e Integrais
-
- Limite com Raiz
por Thyago Quimica » Sex Mai 25, 2012 18:08
- 1 Respostas
- 1326 Exibições
- Última mensagem por Guill

Sex Mai 25, 2012 20:03
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.