• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular a area de uma curva, por integral

Calcular a area de uma curva, por integral

Mensagempor bencz » Qui Ago 25, 2011 00:00

Olá.

tenho a função f(x)=1024*2^{-0.1t}
E o grafico criado por tal função, é um grafico exponencial, onde no grafico y = f(t) e x = T { não sei como criar esse grafico, por isso, vou tentar explicar ele };

Ponto1: (T = 0 ; f(t) = 1024)
Ponto2: (T = 14; f(t) = 64}

Bom, gostaria de saber, como posso fazer para calcular a area abaixo dessa curva, agradeço muito pela resposta, pois vai me ajudar a estudar.
bencz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jul 14, 2011 00:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Calcular a area de uma curva, por integral

Mensagempor Neperiano » Qui Ago 25, 2011 15:17

Ola

Você tenque calcular a integral dessa equação sendo que os limites da integral são 0 e 14, se vc naum sabe calcular integral tem um outro jeito, mas eh bem chato de fazer.

Tente fazer por integral

Qualquer duvida

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Calcular a area de uma curva, por integral

Mensagempor LuizAquino » Qui Ago 25, 2011 21:21

Neperiano escreveu:Você tenque calcular a integral dessa equação (...)

Não faz sentido falar em integral de uma equação, mas sim em integral de uma função.

Quando temos uma equação, dependendo do contexto, o que podemos fazer é integrar ambos os seus membros. Nesse caso, estamos enxergando a expressão em cada membro como se fosse uma função em relação a alguma variável.

bencz escreveu:tenho a função f(x)=1024*2^{-0.1t}

Ao que parece você deseja que a variável independente da função seja t. Desse modo, o correto seria escrever:
f(t)=1024\cdot 2^{-0,1t}


bencz escreveu:Ponto1: (T = 0 ; f(t) = 1024)
Ponto2: (T = 14; f(t) = 64}

De fato, f(0) é igual a 1024. Mas, f(14) não é igual 64. Na verdade, f(40) é igual 64. Confira os dados do exercício.

bencz escreveu:Bom, gostaria de saber, como posso fazer para calcular a area abaixo dessa curva

No caso, você deseja a área entre o gráfico de f e o eixo x no intervalo [0, 40]. Para isso, basta calcular:

\int_0^{40} 1024\cdot 2^{-0,1t} \, dt

Para resolver essa integral, use a técnica de substituição. Faça u = -0,1t e du = -0,1\,dt .

Perceba que se t = 0, temos que u = -0,1\cdot 0 = 0. Por outro lado, se t = 40, temos que u = -0,1\cdot 40 = -4 .

Desse modo, podemos reescrever essa integral como:
\int_0^{-4} -\frac{1024}{0,1}\cdot 2^{u} \, du

Agora tente terminar de resolver o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calcular a area de uma curva, por integral

Mensagempor jorge cordeiro » Qua Ago 31, 2011 23:34

respnder divida 360gra pelo(raio)da,sua curva e tera o perimetro.
jorge cordeiro
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Ago 31, 2011 22:57
Formação Escolar: ENSINO MÉDIO
Área/Curso: cur:tec.manutensao
Andamento: cursando

Re: Calcular a area de uma curva, por integral

Mensagempor pedro_nicollete » Sáb Set 03, 2011 17:46

oi,

Eu achei uns vídeos no Youtube com várias explicacoes de com fazer este tipo de exercicio. Veja aqui


http://www.youtube.com/user/smaniamat


Pedro
pedro_nicollete
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Set 03, 2011 17:41
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Calcular a area de uma curva, por integral

Mensagempor LuizAquino » Sáb Set 03, 2011 21:37

pedro_nicollete escreveu:Eu achei uns vídeos no Youtube com várias explicacoes de com fazer este tipo de exercicio.


Apenas para constar, também há vídeo-aulas em meu canal tratando sobre integrais. O endereço é:

http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.