por ewald » Sáb Ago 20, 2011 17:20
Oi, nao consigo fazer esta questao (logo abaixo). Eu sei que devo usar as relaçoes sen²x = (1 - cos2x)/2 e cos²x = (1 + cos2x)/2 mas chega um ponto que ela fica gigante e o que é pior o resultado nao sai igual ao do gabarito. Bem se alguem puder resolver pra mim eu agradeço.

[integral indef. de 48 vezes seno ao quadrado de x vezes coseno elevado a quarta potencia de x]
Obrigado
-
ewald
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Qui Mai 05, 2011 17:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
por ewald » Sáb Ago 20, 2011 20:02
Consegui!!

Obrigado pra quem leu e tentou fazer a questao. Minha resposta estava certa so tinha que da uma arrumada com as identidades trigonometricas.
Se alguem ficou interessado na questao,, a resposta é :

... e se nao conseguir chegar nessa forma utilize as identidades trigonometricas ou pede ajuda pra mim ou qlq um no forum

-
ewald
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Qui Mai 05, 2011 17:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
por LuizAquino » Dom Ago 21, 2011 21:14
ewald escreveu:Consegui!!

Obrigado pra quem leu e tentou fazer a questao. Minha resposta estava certa so tinha que da uma arrumada com as identidades trigonometricas.
Esse problema é bem comum. Ainda mais em integrais trigonométricas. O estudante resolve a integral corretamente, mas quando confere o gabarito fica frustrado, pois está "diferente" do que ele obteve. Na verdade, o gabarito não está "diferente", mas apenas simplificado.
Fica então a lição: verifique se há alguma simplificação a fazer na resposta que você obteve quando for conferir o gabarito.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2680 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Seg Ago 22, 2011 00:44
- 1 Respostas
- 1321 Exibições
- Última mensagem por LuizAquino

Seg Ago 22, 2011 08:52
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo] Integral com função trigonometrica
por karenfreitas » Qui Jun 30, 2016 18:18
- 1 Respostas
- 3483 Exibições
- Última mensagem por adauto martins

Sáb Jul 09, 2016 18:18
Cálculo: Limites, Derivadas e Integrais
-
- [Dúvida]Função Trigonométrica Inversa em Integral.
por Jhonata » Qui Jun 07, 2012 18:06
- 2 Respostas
- 1817 Exibições
- Última mensagem por Jhonata

Qui Jun 07, 2012 20:40
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral trigonométrica
por -civil- » Sex Mar 30, 2012 03:05
- 1 Respostas
- 1494 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 31, 2012 18:07
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.