• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo 1: Grafico

Calculo 1: Grafico

Mensagempor Piva » Qua Jun 29, 2011 19:13

Boa tarde,
Estou com dificuldades para terminar duas questões envolvendo o numéro e. Eu sempre me embolo com ele. Se possivel, gostaria de uma indicação de algum material que me ajude a esclarecer o seu comportamento dentro de questões como as que colocarei abaixo.

1º) considere a função f(x)=e^x/x²-1. Calcule, dominio, intersecoes com os eixos, assintotas verticais e horizontais, pontos criticos e desenhe o grafico.
vou colocar como eu fiz, por favor, me corrijam!
Dominio: xER |x diferente de 1 e -1.
Intersecoes:
y=0 - e^x/x²1=0 - e^x=0 - ln0 n existe, n tem intersecao com eixo x.
x=0 - y=e^0/0²-1=-1 - intersecao em y em -1.

assintotas verticais:
lim e^x/x²-1=+infinito
x tendendo a +1 pela direita

lim f(x)=-infinito
x tendendo a +1 pela esquerda

limf(x)=-infinito
x tendendo a -1 pela direita

limf(x)=+infinito
x tendendo a -1 pela esquerda.

horizontais:
lim e^x/x²-1= lim e^x/x² / lim1 - lim1/x² = +infinito
x tendendo a +infinito

limf(x) = -infinito
x tendendo a -infinito
NÃO POSSUI ASSINTOTAS HORIZONTAIS.

Pontos criticos:
y'=(x²-1)e^x - e^x(2x) / (x²-1)² = e^x(x²-2x-1) / (x²-1)²
y'=0
Pontos criticos: 1+raizde2 e 1-raizde2

monto o grafico mais fica esquisito... n me convenço. Podem me dizer oq esta errado?

A segunda questão é f(x)=e^(1 / x²-1) e ele pede tudo aquilo.
os meus numeros deram, intersecao em y em 1/e sem intersecao em x.
sem assintotas verticais, e horizontais em 0.
Não possui pontos criticos, e o grafico se assemelha ao da e^x porem com a intersecao em 1/e. ta certo isso?

obrigado pela ajuda!
Piva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jun 29, 2011 18:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?