• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função derivável no ponto

Função derivável no ponto

Mensagempor Lilica » Qua Jun 29, 2011 16:02

Dê um exemplo de uma função f:R-R que é derivável em todos os pontos, exceto em x = 0 e x = 1.
Minha dúvida é a seguinte, encontrei uma função que não é derivável em 1 e 0, mas como posso provar que a mesma será derivável para todos os outros pontos?
Lilica
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Jun 29, 2011 15:38
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Função derivável no ponto

Mensagempor LuizAquino » Qua Jun 29, 2011 16:32

Qual foi a função que você encontrou?

A ideia nesses exercícios é começar com uma função que sabemos ser derivável em todos os seus pontos. Em seguida, manipulamos essa função de modo a ela ficar não diferenciável nos pontos desejados.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Função derivável no ponto

Mensagempor Lilica » Qua Jun 29, 2011 16:47

Eu pensei nesta função:

f (x);
x+1 x<0
2x 0?x<1
x+2 se x?1

Conclui através das derivadas laterais que a mesma não é derivável em 1 nem em 0, mas não me garante que seja derivável em todos os outros pontos. Qual seria a sua idéia?
Lilica
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Jun 29, 2011 15:38
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Função derivável no ponto

Mensagempor LuizAquino » Qua Jun 29, 2011 17:04

Note que a sua função é formada por três pedaços, cada um sendo uma porção de reta. Ora, uma função do tipo h(x) = ax+b (a e b constantes reais) é derivável em todos os pontos de seu domínio! (Se você quiser, facilmente pode demonstrar isso.)

Por exemplo, a função h(x) = x + 1 é derivável em todos os pontos de seu domínio (que seria o conjunto dos números reais). É claro que (-\infty,\,0) é um subconjunto do domínio de h, portanto ela é derivável nele. Em resumo, h é derivável para x < 0.

Observação
Para provar que a sua função é diferenciável em todos os seus pontos, exceto em 0 e 1, você terá que provar que o limite \lim_{x\to a} \frac{f(x)-f(a)}{x-a} existe para três casos distintos:
(i) a < 0
(ii) 0 < a < 1
(iii) a > 1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 56 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.