• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas - Velocidade e Aceleração

Derivadas - Velocidade e Aceleração

Mensagempor Fabio Cabral » Ter Jun 14, 2011 14:49

Movimento de uma particula A posição de uma partícula que se desloca ao longo de uma reta coordenada é dada por
s=\sqrt[]{1+4t}, com s em metros e t em segundos. Determine a velocidade e a aceleração da partícula para t = 6s.

Derivei a função e substitui t=6. Achei a velocidade, certo? (\frac{2}{5} m/s)

Como faço para encontrar a aceleração?

Teoria:Se possível, me explique porque eu posso usar a derivada para encontrar esses dados!

Grato,
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Derivadas - Velocidade e Aceleração

Mensagempor carlosalesouza » Ter Jun 14, 2011 15:40

Meu caro... seguinte....

Vamos, primeiro, à teoria... o que é a velocidade?

Podemos dizer que a velocidade é a razão da variação do espaço num intervalo de tempo, não é verdade?

Veja, que vc tem uma função s(t), espaço em função do tempo, não é?

A derivada é a variação da função, neste caso s, num determinado ponto (o intervalo/variação) de tempo tende a zero), que será nosso t.

Assim, poderemos obter a velocidade encontrando a derivada da função espaço, que foi o que voce fez... encontrar a taxa de variação do espaço num determinado tempo...

Continuando... o que é a aceleração?

Podemos defini-la como a variação da velocidade num intervalo de tempo, não é verdade?

Novamente, a variação da velocidade num ponto (variação = 0) de tempo será a derivada da função velocidade, usando o mesmo método....

ok?

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59