• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas - Velocidade e Aceleração

Derivadas - Velocidade e Aceleração

Mensagempor Fabio Cabral » Ter Jun 14, 2011 14:49

Movimento de uma particula A posição de uma partícula que se desloca ao longo de uma reta coordenada é dada por
s=\sqrt[]{1+4t}, com s em metros e t em segundos. Determine a velocidade e a aceleração da partícula para t = 6s.

Derivei a função e substitui t=6. Achei a velocidade, certo? (\frac{2}{5} m/s)

Como faço para encontrar a aceleração?

Teoria:Se possível, me explique porque eu posso usar a derivada para encontrar esses dados!

Grato,
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Derivadas - Velocidade e Aceleração

Mensagempor carlosalesouza » Ter Jun 14, 2011 15:40

Meu caro... seguinte....

Vamos, primeiro, à teoria... o que é a velocidade?

Podemos dizer que a velocidade é a razão da variação do espaço num intervalo de tempo, não é verdade?

Veja, que vc tem uma função s(t), espaço em função do tempo, não é?

A derivada é a variação da função, neste caso s, num determinado ponto (o intervalo/variação) de tempo tende a zero), que será nosso t.

Assim, poderemos obter a velocidade encontrando a derivada da função espaço, que foi o que voce fez... encontrar a taxa de variação do espaço num determinado tempo...

Continuando... o que é a aceleração?

Podemos defini-la como a variação da velocidade num intervalo de tempo, não é verdade?

Novamente, a variação da velocidade num ponto (variação = 0) de tempo será a derivada da função velocidade, usando o mesmo método....

ok?

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}