• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas - Velocidade e Aceleração

Derivadas - Velocidade e Aceleração

Mensagempor Fabio Cabral » Ter Jun 14, 2011 14:49

Movimento de uma particula A posição de uma partícula que se desloca ao longo de uma reta coordenada é dada por
s=\sqrt[]{1+4t}, com s em metros e t em segundos. Determine a velocidade e a aceleração da partícula para t = 6s.

Derivei a função e substitui t=6. Achei a velocidade, certo? (\frac{2}{5} m/s)

Como faço para encontrar a aceleração?

Teoria:Se possível, me explique porque eu posso usar a derivada para encontrar esses dados!

Grato,
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: Derivadas - Velocidade e Aceleração

Mensagempor carlosalesouza » Ter Jun 14, 2011 15:40

Meu caro... seguinte....

Vamos, primeiro, à teoria... o que é a velocidade?

Podemos dizer que a velocidade é a razão da variação do espaço num intervalo de tempo, não é verdade?

Veja, que vc tem uma função s(t), espaço em função do tempo, não é?

A derivada é a variação da função, neste caso s, num determinado ponto (o intervalo/variação) de tempo tende a zero), que será nosso t.

Assim, poderemos obter a velocidade encontrando a derivada da função espaço, que foi o que voce fez... encontrar a taxa de variação do espaço num determinado tempo...

Continuando... o que é a aceleração?

Podemos defini-la como a variação da velocidade num intervalo de tempo, não é verdade?

Novamente, a variação da velocidade num ponto (variação = 0) de tempo será a derivada da função velocidade, usando o mesmo método....

ok?

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}