• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Otimização - Máximo e Mínimo

Otimização - Máximo e Mínimo

Mensagempor elbert005 » Dom Jun 05, 2011 20:32

Bom pessoal, eu vou apresentar este trabalho na quarta, gostaria quem alguem especializado no assunto avalia-se se possível, para ver onde posso melhorar e se alguma coisa esta errada na resolução!!!!


Encontre o ponto P na parábola y=x² que está mais próximo de (3,0). Justifique sua resposta que o ponto que você encontrou é realmente o mais próximo.

Bom, para iniciarmos o problema utilizaremos a fórmula da distância entre dois pontos.

Solução: A distância entre os pontos (3,0) e (x,y) é:
d=?((x-3)^2+(y-0)²) , como vamos trabalhar em termos de x, logo substituiremos y=x², sendo assim:
d=?((x-3)^2+(x^2 )^2 ) , agora iremos inverter a raiz de lado, logo: d²=f(x) (x-3)^2+(x^2)², devemos nos convencer que o mínimo de d ocorre no mesmo mínimo de d², porém é mais fácil de ser trabalhar com este último.
Derivando obtemos:
f^' (x)=2(x-3)+2(x^2 )2x
f^' (x)=2x-6+4x³
Como a equação é 2x-6+4x^3, a resposta que se obtém é x=1, desde que: f(1)=4.1³+2.1-6=0
Dividindo a equação por (x-1)* ? 2x³-x-3| x-1
2x³-2x^2 2x^2+2x+3
2x^2+x
2x²-2x
3x-3
3x-3
0
Desde b²-4ac é negativo em 2x²+2x+3, não há mais soluções.
Voltando à nossa função da primeira derivada, vamos provar também pelo teste da Segunda Derivada.
f^' (x)=4x³+2x-6
f^'' (x)=12x²+2, logo f(1)=12.1²+2=14

Logo se f^' (c)=0 e f^'' (c)>0 , então f tem um mínimo local em c.
Pensando na imagem, este deve ser o lugar onde ocorre um mínimo e não máximo. Também ao pensar sobre imagem, não há máximo.
O valor correspondente de y é y=x²=1. Assim o ponto sobre y=x² mais próximo de (3,0) é (1,1).
elbert005
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Mai 31, 2011 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 61 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}