• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite indeterminado 0/0

Limite indeterminado 0/0

Mensagempor ewald » Qui Mai 05, 2011 19:08

\lim_{x\rightarrow 1}  \frac{\sqrt[2]{x} -{x}^{2}}{1 -\sqrt[2]{x}}

Oi preciso de uma forma de se resolver este limite SEM o uso de L'hopital. Agradeço tmb se puderem deixar alguns dos 'macetes' para extrair a indeterminaçao de limites.

Caso LCMAquino esteja lendo : Gostei muito das tuas aulas no youtube, no entanto nao achei alguma que se dedique a mostrar metodos de extraçao da indeterminaçao do limite em questoes mais elaboradas, que sem duvidas é a parte de limites que mais causa duvidas (pra mim essa que eu botei ja é elaborada! ¬¬' ).

Obs.: desculpa os erros de portugues!
ewald
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Qui Mai 05, 2011 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrica
Andamento: cursando

Re: Limite indeterminado 0/0

Mensagempor LuizAquino » Qui Mai 05, 2011 19:41

\lim_{x\to 1} \frac{\sqrt{x} -{x}^{2}}{1 -\sqrt{x}} = \lim_{x\to 1} \frac{(\sqrt{x} -{x}^{2})(1+\sqrt{x})}{(1 -\sqrt{x})(1+\sqrt{x})}

= \lim_{x\to 1} \frac{(\sqrt{x} -{x}^{2})(1+\sqrt{x})}{1 - x}

= \lim_{x\to 1} \frac{(\sqrt{x} -{x}^{2})(1+\sqrt{x})(\sqrt{x}+x^2)}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1}  \frac{(x -x^4)(1+\sqrt{x})}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1} \frac{x(1 - x^3)(1+\sqrt{x})}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1} \frac{x(1-x)(1+x+x^2)(1+\sqrt{x})}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1} \frac{x(1+x+x^2)(1+\sqrt{x})}{\sqrt{x}+x^2}

\frac{1\cdot(1+1+1^2)(1+\sqrt{1})}{\sqrt{1}+1^2} = 3

ewald escreveu:Caso LCMAquino esteja lendo : Gostei muito das tuas aulas no youtube, no entanto não achei alguma que se dedique a mostrar métodos de extração da indeterminação do limite em questões mais elaboradas, que sem duvidas é a parte de limites que mais causa dúvidas (pra mim essa que eu botei já é elaborada! ¬¬' ).

Fico feliz que você tenha gostado de minhas vídeo-aulas. :)

Na verdade, para que o aluno consiga calcular os limites é necessário que ele esteja dominando os conteúdos de ensino fundamental e médio. Principalmente simplificações de expressões algébricas, fatoração, racionalização, produtos notáveis e divisão de polinômios. Caso você não esteja dominando esses conteúdos eu recomendo que você assista ao canal do Nerckie:
http://www.youtube.com/nerckie
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2649
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D