• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite indeterminado 0/0

Limite indeterminado 0/0

Mensagempor ewald » Qui Mai 05, 2011 19:08

\lim_{x\rightarrow 1}  \frac{\sqrt[2]{x} -{x}^{2}}{1 -\sqrt[2]{x}}

Oi preciso de uma forma de se resolver este limite SEM o uso de L'hopital. Agradeço tmb se puderem deixar alguns dos 'macetes' para extrair a indeterminaçao de limites.

Caso LCMAquino esteja lendo : Gostei muito das tuas aulas no youtube, no entanto nao achei alguma que se dedique a mostrar metodos de extraçao da indeterminaçao do limite em questoes mais elaboradas, que sem duvidas é a parte de limites que mais causa duvidas (pra mim essa que eu botei ja é elaborada! ¬¬' ).

Obs.: desculpa os erros de portugues!
ewald
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Qui Mai 05, 2011 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrica
Andamento: cursando

Re: Limite indeterminado 0/0

Mensagempor LuizAquino » Qui Mai 05, 2011 19:41

\lim_{x\to 1} \frac{\sqrt{x} -{x}^{2}}{1 -\sqrt{x}} = \lim_{x\to 1} \frac{(\sqrt{x} -{x}^{2})(1+\sqrt{x})}{(1 -\sqrt{x})(1+\sqrt{x})}

= \lim_{x\to 1} \frac{(\sqrt{x} -{x}^{2})(1+\sqrt{x})}{1 - x}

= \lim_{x\to 1} \frac{(\sqrt{x} -{x}^{2})(1+\sqrt{x})(\sqrt{x}+x^2)}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1}  \frac{(x -x^4)(1+\sqrt{x})}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1} \frac{x(1 - x^3)(1+\sqrt{x})}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1} \frac{x(1-x)(1+x+x^2)(1+\sqrt{x})}{(1 - x)(\sqrt{x}+x^2)}

= \lim_{x\to 1} \frac{x(1+x+x^2)(1+\sqrt{x})}{\sqrt{x}+x^2}

\frac{1\cdot(1+1+1^2)(1+\sqrt{1})}{\sqrt{1}+1^2} = 3

ewald escreveu:Caso LCMAquino esteja lendo : Gostei muito das tuas aulas no youtube, no entanto não achei alguma que se dedique a mostrar métodos de extração da indeterminação do limite em questões mais elaboradas, que sem duvidas é a parte de limites que mais causa dúvidas (pra mim essa que eu botei já é elaborada! ¬¬' ).

Fico feliz que você tenha gostado de minhas vídeo-aulas. :)

Na verdade, para que o aluno consiga calcular os limites é necessário que ele esteja dominando os conteúdos de ensino fundamental e médio. Principalmente simplificações de expressões algébricas, fatoração, racionalização, produtos notáveis e divisão de polinômios. Caso você não esteja dominando esses conteúdos eu recomendo que você assista ao canal do Nerckie:
http://www.youtube.com/nerckie
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2649
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.