Estou fazendo Cálculo I e estou tendo dificuldade no conceito de limite infinito nos seguintes problemas:
(resposta: -
)Primeiramente, abri a expressão e apliquei o limite trigonométrico fundamental:

Daí, apliquei as propriedades operatórias dos limites:

Resolvendo (acredito que o erro está aqui):
Seria muita inocência imaginar que infinito multiplicado por -1 daria
, que é a resposta?O outro, se não se importarem:
(resposta: 0)Desenvolvi, rumo ao limite trigonométrico fundamental e multipliquei por x/x:

Daí, separando os limites temos que o limite de "x" é zero:

Novamente, seria muita inocência imaginar que infinito multiplicado por zero dá zero?
Ufa, agradeceria qualquer luz que algum amigo puder dar.


, sendo
, mas
e
.
, porém o resultado é 1.


é uma função limitada e
, então
.

.
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.