• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrar exp

Integrar exp

Mensagempor LBT » Qui Jan 13, 2011 09:05

boas,

Como faço para calcular \int_{}^{}\left({e}^{{t}^{2}} * 2t \right)


Cmps
LBT
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 18, 2010 16:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: Informatica
Andamento: cursando

Re: Integrar exp

Mensagempor MarceloFantini » Qui Jan 13, 2011 11:11

Use substituição simples, fazendo u=t^2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integrar exp

Mensagempor LBT » Qui Jan 13, 2011 21:26

Fantini escreveu:Use substituição simples, fazendo u=t^2.



Desculpe, não entendi a ideia :S
Como assim u=t^2 ?!
LBT
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 18, 2010 16:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: Informatica
Andamento: cursando

Re: Integrar exp

Mensagempor MarceloFantini » Sex Jan 14, 2011 04:46

Você aprendeu mudança de variável na integral? É isso que você tem que fazer: u = t^2 \Longrightarrow du = 2t\,dt. Então a integral fica:

\int \underbrace{e^{t^2}}_{e^u} \cdot \underbrace{2t \, dt}_{du} = \int e^u \, du = e^u + C_1 = e^{t^2} + C
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integrar exp

Mensagempor LBT » Sex Jan 14, 2011 07:03

Fantini escreveu:Você aprendeu mudança de variável na integral? É isso que você tem que fazer: u = t^2 \Longrightarrow du = 2t\,dt. Então a integral fica:

\int \underbrace{e^{t^2}}_{e^u} \cdot \underbrace{2t \, dt}_{du} = \int e^u \, du = e^u + C_1 = e^{t^2} + C


Ja percebi, obrigado! Tinha aqui 2 resolvidos dessa maneira, mas nc tinha percebido o porque! Agora percebi, obrigado
LBT
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 18, 2010 16:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: Informatica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.