• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxas de Variação Relacionadas

Taxas de Variação Relacionadas

Mensagempor KSaito » Seg Nov 29, 2010 12:07

Bom dia pessoal,

se alguém puder me ajudar com esse problema de taxas de variação relacionadas, desde já agradeço. Abaixo segue o enunciado:

Uma piscina tem 24m de comprimento e seus extremos são trapézios isósceles com altura de 6m, uma base menor de 6m e uma base maior de 8m. A água está sendo bombeada para a piscina à razão de 10m³/min. Com que velocidade o nível de água está subindo quando a profundidade da água é de 2m ?

Resposta: \frac{5}{68}m/min.

Eu calculei a área do trapézio quando a profundidade da água é igual a 2m e cheguei no valor 10,008m². Para achar o Volume, multipliquei a área pelo comprimento da piscina e cheguei ao valor 240,192m³.

Porém, estou tendo dificuldades para interpretar o problema e aplicar a regra da cadeia.

Acredito que a informação dada no problema é que \frac{dV}{dt}=10m³/min.

O problema está pedindo a informação da velocidade \frac{dv}{dt} quando a profundidade da água for igual a 2m.

Cheguei até o seguinte ponto: \frac{dV}{dt}=\frac{dV}{dv}.\frac{dv}{dt}\Rightarrow\frac{dV}{dt}= ? .\frac{dv}{dt}

Me corrijam se eu interpretei errado.

Obrigado.
KSaito
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Nov 29, 2010 11:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}