• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de limite através da série de MacLaurin

Cálculo de limite através da série de MacLaurin

Mensagempor Camargo » Qui Nov 25, 2010 15:13

Olá

Tenho que resolver um limite através da série de MacLaurin.
O limite é esse : \frac{sen(x²)+cos(x³)-x²-1}{{x}^{6}}

Vi a resolução de alguns problemas parecidos onde escolhia-se um termo, cos(x³) por exemplo,
e derivava-se esse termo para montar a série. Aí a resolução ficava mais ou menos assim:
\frac{(1-\frac{x³}{3!}+...)+sen(x²)-x²-1}}{{x}^{6}}

Aí simplificava-se x, substituia-se 0 nos restantes até que eu chegaria em uma numero.

Isto é possível e correto?
Camargo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 25, 2010 14:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.