• Anúncio Global
    Respostas
    Exibições
    Última mensagem

para que serve limite, deriva e integral

para que serve limite, deriva e integral

Mensagempor gutorocher » Qui Set 30, 2010 11:56

bom dia

gostaria que tirasse uma dúvida que já tenho a um tempo,
eu já tive na faculdade as disciplinas de calculo 1 e 2 e até então não descobrir para que serve o limite, derivada e integrais(sei ate fazer o calculo), poderia explicar sua crucial função e exemplos na prática que podem ser utilizado em limite, derivada e integral.
Avatar do usuário
gutorocher
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jul 21, 2010 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: CCP
Andamento: formado

Re: para que serve limite, deriva e integral

Mensagempor Neperiano » Qui Set 30, 2010 13:12

Ola

Derivada se usa para descobrir os valores exatos por exemplo de lados de área com o minimo ou maximo custo.
Integral se usa para calcular áreas de curvas que não podem ser calculadas por forma da geometria, curvas complexas.
Limite se usa para descobrir os valores que uma curva tendem mesma num ponto estar definido bem longe dali, e mais intuitivo
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: para que serve limite, deriva e integral

Mensagempor Molina » Qui Set 30, 2010 17:46

gutorocher escreveu:bom dia

gostaria que tirasse uma dúvida que já tenho a um tempo,
eu já tive na faculdade as disciplinas de calculo 1 e 2 e até então não descobrir para que serve o limite, derivada e integrais(sei ate fazer o calculo), poderia explicar sua crucial função e exemplos na prática que podem ser utilizado em limite, derivada e integral.

Boa tarde,

Acho interessante você pesquisar as aplicações desses assuntos na física. Uma breve olhada no google e você pode ver que esses assuntos estão por todas as partes.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}