por CrazzyVi » Seg Set 27, 2010 17:13
Boa Tarde
Eu gostaria se possível saber como fica o resultado da integral

é um integral imprópria e não consegui achar nada relacionado no fórum, caso tenha peço por favor q me mostrem o link.
achar a primitiva tem varios programas q fazem mas eu gostaria de entender o passo-a-passo se possível
agradeço desde já.
-
CrazzyVi
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Nov 14, 2009 11:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharel em Matemática
- Andamento: cursando
por Marcampucio » Seg Set 27, 2010 19:57
.


A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
por CrazzyVi » Ter Set 28, 2010 21:31
Marcampucio,
vlw, até aí eu entendi mas oq eu faço com os infinitos pq a resposta eh: converge, resposta

???
como chego no

??
-
CrazzyVi
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Nov 14, 2009 11:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharel em Matemática
- Andamento: cursando
por Marcampucio » Ter Set 28, 2010 22:14
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
por CrazzyVi » Qua Set 29, 2010 18:44
Me ajudoou mto Marcampucio, Mto obrigada
-
CrazzyVi
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Nov 14, 2009 11:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharel em Matemática
- Andamento: cursando
por menino de ouro » Qui Jan 24, 2013 13:43
pessoal da uma ajuda aqui ,por favor como chegar a esse resultado?
![\int_{0}^{\infty}\frac{1}{\sqrt[]{x(x+4)}}dx = \frac{\Pi}{2} \int_{0}^{\infty}\frac{1}{\sqrt[]{x(x+4)}}dx = \frac{\Pi}{2}](/latexrender/pictures/08beffa07146f008e5c6a581ce05e421.png)
, com essa resposta ela converge?
-
menino de ouro
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Out 23, 2012 22:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: quimica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral impropria
por menino de ouro » Dom Jan 13, 2013 17:04
- 3 Respostas
- 2292 Exibições
- Última mensagem por thejotta

Seg Jan 14, 2013 00:11
Cálculo: Limites, Derivadas e Integrais
-
- Integral Imprópria
por Man Utd » Sex Ago 09, 2013 16:09
- 0 Respostas
- 1169 Exibições
- Última mensagem por Man Utd

Sex Ago 09, 2013 16:09
Cálculo: Limites, Derivadas e Integrais
-
- Integral impropria
por vanu » Qui Dez 12, 2013 20:05
- 1 Respostas
- 1297 Exibições
- Última mensagem por Man Utd

Sex Dez 13, 2013 11:22
Cálculo: Limites, Derivadas e Integrais
-
- Integral impropria
por isabelrebelo » Qui Abr 23, 2015 17:24
- 0 Respostas
- 1485 Exibições
- Última mensagem por isabelrebelo

Qui Abr 23, 2015 17:24
Cálculo: Limites, Derivadas e Integrais
-
- [Áreas] Integral Imprópria
por klueger » Qua Fev 27, 2013 09:40
- 1 Respostas
- 1709 Exibições
- Última mensagem por young_jedi

Qua Fev 27, 2013 13:55
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.