• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivada de raíz

derivada de raíz

Mensagempor jmario » Ter Jul 20, 2010 12:11

Como se calcula essa derivada
2\sqrt[]{w}+3

Por acaso dá isso aqui
\frac{1}{2}2{w}^{-\frac{1}{2}}

ou fica assim
\frac{1}{2}{w}^{-\frac{1}{2}}

se fica assim porque o 2 desaperece?

Grato
Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: derivada de raíz

Mensagempor PeIdInHu » Ter Jul 20, 2010 14:03

acho q seria assim ne..
\frac{1}{2}.2{w}^{\frac{-1}{2}}\Rightarrow {w}^{\frac{-1}{2}}\Rightarrow \sqrt[2]{\frac{1}{w}}
PeIdInHu
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 22, 2010 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Imformatica Biomedica
Andamento: cursando

Re: derivada de raíz

Mensagempor Tom » Qua Jul 21, 2010 00:39

O Peidinhu está correto.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: derivada de raíz

Mensagempor 26 Lidia B » Dom Set 16, 2012 19:09

\sqrt[2]{}1/w[/tex]2\sqrt[2]{}
w+3

2.w+3.{\frac{1/2}{}}^{}

esse 1/2 depois do 3 é elevado

1/2.2w{-1/2}^{}

corta o 2 pois ta multiplicando

w{-1/2}^{}

\sqrt[2]{}1/w
26 Lidia B
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Set 16, 2012 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}