• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivada de raíz

derivada de raíz

Mensagempor jmario » Ter Jul 20, 2010 12:11

Como se calcula essa derivada
2\sqrt[]{w}+3

Por acaso dá isso aqui
\frac{1}{2}2{w}^{-\frac{1}{2}}

ou fica assim
\frac{1}{2}{w}^{-\frac{1}{2}}

se fica assim porque o 2 desaperece?

Grato
Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: derivada de raíz

Mensagempor PeIdInHu » Ter Jul 20, 2010 14:03

acho q seria assim ne..
\frac{1}{2}.2{w}^{\frac{-1}{2}}\Rightarrow {w}^{\frac{-1}{2}}\Rightarrow \sqrt[2]{\frac{1}{w}}
PeIdInHu
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 22, 2010 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Imformatica Biomedica
Andamento: cursando

Re: derivada de raíz

Mensagempor Tom » Qua Jul 21, 2010 00:39

O Peidinhu está correto.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: derivada de raíz

Mensagempor 26 Lidia B » Dom Set 16, 2012 19:09

\sqrt[2]{}1/w[/tex]2\sqrt[2]{}
w+3

2.w+3.{\frac{1/2}{}}^{}

esse 1/2 depois do 3 é elevado

1/2.2w{-1/2}^{}

corta o 2 pois ta multiplicando

w{-1/2}^{}

\sqrt[2]{}1/w
26 Lidia B
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Set 16, 2012 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}