• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivada de raíz

derivada de raíz

Mensagempor jmario » Ter Jul 20, 2010 12:11

Como se calcula essa derivada
2\sqrt[]{w}+3

Por acaso dá isso aqui
\frac{1}{2}2{w}^{-\frac{1}{2}}

ou fica assim
\frac{1}{2}{w}^{-\frac{1}{2}}

se fica assim porque o 2 desaperece?

Grato
Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: derivada de raíz

Mensagempor PeIdInHu » Ter Jul 20, 2010 14:03

acho q seria assim ne..
\frac{1}{2}.2{w}^{\frac{-1}{2}}\Rightarrow {w}^{\frac{-1}{2}}\Rightarrow \sqrt[2]{\frac{1}{w}}
PeIdInHu
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 22, 2010 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Imformatica Biomedica
Andamento: cursando

Re: derivada de raíz

Mensagempor Tom » Qua Jul 21, 2010 00:39

O Peidinhu está correto.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: derivada de raíz

Mensagempor 26 Lidia B » Dom Set 16, 2012 19:09

\sqrt[2]{}1/w[/tex]2\sqrt[2]{}
w+3

2.w+3.{\frac{1/2}{}}^{}

esse 1/2 depois do 3 é elevado

1/2.2w{-1/2}^{}

corta o 2 pois ta multiplicando

w{-1/2}^{}

\sqrt[2]{}1/w
26 Lidia B
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Set 16, 2012 18:48
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.